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ABSTRACT 

Demand forecasting is a challenging subject of interest to many organizations whose main focus 
is to improve their steady growing customer request/demand, and help in increasing their revenue 

generation. The story is no different in the power industry. It is quite difficult for power or 
electrical producers to store high quantum of the energy produced, hence this poses a challenge 

in estimating precisely the quantum of electrical energy in order to equate demand and supply of 

powers as well as reducing or eliminating the rising transmission losses. This study explores 
potential time series models in electricity demand prediction or forecasting for the Western 

Regions of Ghana. Secondary data was sourced formally from the regional headquarters of ECG 
to aid in research design to be able to estimate the quantum of electricity needed by consumers 

in the region. This was done using time series data analysis toolpak software. Results show that 

the models formulated are viable for future consumption forecasts and other investment in 

alternative power source projects in meeting these future demands. Since there are up-surging 

energy demand patterns in the region, the flexibility of the formulated models can be very useful 
and supplementary to framing effective and efficient energy policies. 
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1. Introduction  

Accurately modeling and forecasting electricity demand is a very important issue for 

decision making in deregulated electricity markets. For the efficient management of day-to-day 

operations of a power system, short term forecasts are very important (Jain et al., 2009), whereas 

for generator maintenance, acquiring energy resources, balance sheet calculations, new structural 

investment based on the anticipation of future demand or for long term bilateral contracts to 

ensure low financial risk, medium and long term forecasts are usually utilized. 

Efficient and reliable electricity generation, transmission and distribution are critical to 

achieving accelerated growth in all sectors of Ghana’s economy. As Ghana’s industry base started 

growing rapidly in the early 2000s, there was a commensurate increase in the country’s national 

electric energy consumption from approximately 364 kilowatt-hours per capita (kWh/capita) in 
2000 to 534 kWh/capita in 2020 (Asumadu-Sarkodie and Owusu, 2016a; Energy Commission of 

Ghana, 2021).  
Even with increases in generating capacity over the years arising from public and private 

sector participation, there are still severe challenges with reliable supply due to growing demand 

and network instabilities emanating from technical challenges with thermal generation which now 

constitutes over 64% of Ghana’s gross generating capacity (Energy Commission of Ghana, 2021. 

Electricity forecasting can be employed for demand side management. In demand side 

management, customers are cautioned on energy saving tips in conserving electricity during the 

high demand periods called the peak hours and utilize it during the low peak hours. 

Statistical models such as regression models, exponential smoothing and time series models 

are widely used for electricity pricing and demand forecasting problems. These models generally 

perform better in cases of short-term forecasting and are extensively studied (Cheng et al, 2015; 

Trindade, 2002; Kim et al., 2002; Kyriakides and Polycarpou, 2007; Taylor and McSharry, 2007; 
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Weron and Misiorek 2005; Baki et al, 2005; Abdel-Aal et al, 1997). Exponential smoothing 

method uses a weighting factor known as the smoothing constant (parameter) that reflects the 

weight given to the most recent data values. Smoothing constant value lies between 0 and 1 and 

it determines the degree of smoothening and consequently, how responsive the model is to the 

fluctuations in the data (Bosq, 2015). In the electricity context, these techniques have been widely 

used to model and predict electricity demand and prices. In the short term forecast the techniques 

generally produce better results as greater weights are given to more recent observations. 

However, the forecast is relatively sensitive to the specification of the smoothing constant. In 

general, these methods are capable of accounting for both the time correlation and random nature 

existing in the underlying phenomenon. To account for the possible correlation among different 

load periods, vector autoregressive (VAR) models are also used to forecast demand series 

(Sulugodu & Deka 2019; Ang, 2005).  

Proper demand management facilitates the planning and use of resources for positive and 

profitable results, and may involve marketing programs designed to increase or reduce demand in 

a relatively short time (Feinberg and Genethliou, 2005; Louie, 2017). 

The ability to estimate demand depends on a medium of unearthing the values for demand 
in future crises. This explains the critical role of demand forecasting in managing every business 

entity. The decision of an organization to invest and/ or expand an existing or new infrastructure, 

increase human resource capacity and process/procedure depend on what the future depicts, 

(Boisseleau, 2004). The key roles or benefits of forecasting in demand management are in: 

stabilizing employment and production, taking management decisions, evaluating performance, 

planning of facilities and an optimal day-to-day operation of the plants. (Feinberg and Genethliou, 

2005; Kyriakides and Polycarpou, 2007; Hahn and Nieberg, 2009; Sarkodie, 2017; Adom and 

Bekoe, 2012). 

Hahn and Nieberg (2009), in their extensive review of methods and models for load demand 

forecasting found that, though may suffer from numerical instabilities, time-series methods such 

as the Autoregressive Integrated Moving Average Model (ARIMA) model, are commonly used 

in load forecasting. The ARIMA model is a special kind of a regression model which comprises 

an Autoregressive (AR) component and a Moving Average (MA) component that are dependent 

on past values and past errors, respectively. ARIMA models are comparatively good in modeling 

and forecasting as compared to other linear time series models. However, these models are not 

capable of capturing both seasonal and non-seasonal patterns in a time series. An extension of 

these models to capture seasonality is the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model. A time series is described as exhibiting seasonality if there exists a regular 

pattern in changes that repeats over several time intervals until the patterns repeat again. SARIMA 

models are well known for statistical modeling and forecasting but are, however, unable to extract 

nonlinear relationships within the time series data (Box and Jenkins, 1976; Meese and Geweke, 

1984; Harvey, 1990; Marcellino, 2007; Atilla et al, 2007; Shitan and Peiris, 2011; Stock and 

Watson, 1996; Stock and Watson 2003; N.B Ahmed, 2018; Asumadu-Sarkodie and Owusu, 

2016d; Box et al, 1987; Jiang et al, 2018). 

A significant amount historical demand data exists for the Western regions of Ghana, 

however, this data which is generated within a 24-hour base has only been used for monthly 

billing of customers rather than gathering other insights from it to help improve on customer 

satisfaction and facilitate strategic decision making. 

 The SARIMA model is touted as having the capability to predict more accurately than 

traditional forecasting techniques. This study therefore seeks to evaluating the effectiveness of 

SARIMA in predicting electricity demand using data from the Western Region of Ghana 
 

2. Research Methods 

2.1. Case Study Area  

The Western (i.e. Western and Western-North) Regions of Ghana are located at the 

southern part of the country, along the Atlantic Ocean. The area is regarded as one of the agro-

based regions in the country due to its fertile soil and favorable rainfall pattern.  

The area has a projected population of almost three million, one hundred thousand (3, 100, 

000) (Ghana Statistical Service, 2021).  
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The area covers a total land area of approximately twenty-four thousand square kilometers 

(24, 000 sq. kms). The area is blessed with abundant natural resources like gold, bauxite, diamond, 

manganese, as well as the commercial discovery of oil and gas known as the black gold. The 

presence of these mineral resources makes the regions view themselves as some of the most tax 

resourceful regions to the government in executing its mandate to the area and the country as a 

whole.  

Over the past decade, more than 58% of electricity generated or produced in Ghana has 

been utilized by the non-residential and industrial sectors (Energy Commission of Ghana, 2020), 

of which the quantities consumed by mining companies in the Western Region of Ghana cannot 

be ignored. 

2.2. Data Collected 

Electricity cannot be stored in large quantum, hence, one can describe its demand and 

utilization as just in time; that is, once produced, electricity must be transmitted and distributed 

promptly for its usage. The continuous usage of this electrical power allows metering and billing 

to be done from seconds to years, as appropriate, by the distributing company. This monitoring 

and metering are done through the usage of advanced smart meters, some of which are prepaid 

meters, whilst others are postpaid meters. Postpaid or prepaid advanced smart meters are installed 

at noticeable and readable points by the distribution companies in the region to capture the inflow 

and usage of electrical power by customers. 

 The meters are calibrated to record electricity usage by every customer for billing 

purposes. The daily usage of electricity is collated into months, and then translated into financial 

terms to be paid by the customers. 

Domestic electrical connectivity ensures that electrical power is stepped down to a safe 

voltage level of about 250 volts using a transformer. Industrial or commercial users demand 

higher amounts of connectivity to power their high consuming electrical gadgets. It is in this vein 

that the distribution company decided to segregate its customers into three specialized categories 

to facilitate determining the connectivity quantum, decide on the appropriate connectivity 

apparatus, as well as, estimating the right billings for revenue generation.  

The Special Load Tariff group of customers is made of high consuming industries who 

demand a minimum of 100 KVA of electricity, the Non-Special Load Tariff customers are 

electricity consumer groups consuming below the one hundred kilo voltages (˂100 KVA) and 

due to inefficiencies and unreliability of electricity consumption data as well as the alarming rate 

of electricity theft among the Non-Special Tariff customers, an advanced metering device that 

allow customers to purchase credits before accessing electricity other than the using power before 

payment system (Prepaid Tariff Customers) was also introduced. The monthly consumption of 

electricity by the three groups of customers from January 2008 to December 2013 was used as 

historical data for forecasting 

2.3.  Data Analysis and Modelling 

The Seasonal ARIMA forecasting technique is adopted for this study.  The Seasonal 

ARIMA model is usually denoted in the form ARIMA (p, d, q) ∗ (P, D, Q)s  

where: 

 p is the number of non-seasonal Autoregressive component; q is the number of non-seasonal 

Moving  Average component; d is the order of non-seasonal differencing; P is the number of 

seasonal AR component; Q is the number of seasonal MA component; D is order of seasonal 

differencing and s is time span of repeating seasonal pattern and can be represented monthly as  

s = 12. (Shi et al, 2011). 

The seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a 

multiplicative model. It can be written as: 

ARIMA (p, d, q) X (P, D, Q) S 

 The general form of seasonal model SARIMA (p, d, q) (P, D, Q) s is given by: 

𝝓(𝑩)𝜱(𝑩)𝒔(𝟏 − 𝑩)𝒅(𝟏 − 𝑩)𝒔𝒚𝒕 = 𝜽(𝑩)𝜣(𝑩𝒔)𝜺𝒕…………………………………….… 2.1 

where 

∅(𝑩) = 𝟏 − ∅𝟏𝑩− ∅𝟐𝑩
𝟐 −⋯−∅𝒑𝑩

𝒑………………………………………………….. 2.2 

𝜱(𝑩𝒔) = 𝟏 − 𝜱𝟏𝑩
𝒔 −𝜱𝟐𝑩

𝟐𝒔 −⋯− ∅𝒑𝑩
𝒑𝒔…………………………………..…………. 2.3 
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𝜽(𝑩) = 𝟏 + 𝜽𝟏𝑩 + 𝜽𝟐𝑩
𝟐 +⋯+ 𝜽𝒑𝑩

𝒑…………………………………………………… 2.4 

𝜽(𝑩𝒔) = 𝟏 + 𝜽𝟏𝑩
𝒔 + 𝜽𝟐𝑩

𝟐𝒔 +⋯+ 𝜽𝒑𝑩
𝒑𝒔…………………………………………..…… 2.5 

and yt is the time series observation at time period (t),  

B is the backward shift operator, 

 εt is a sequence of error term with mean zero and constant variance (σ2), ϕ(i) and Φj are the 

non- seasonal and seasonal AR components respectively, θi and Θj are the non- seasonal and 

seasonal MA components respectively. 

The non-seasonal components are: 

AR: ∅(𝑩) = 𝟏 − ∅𝟏𝑩 −⋯− ∅𝒑𝑩
𝒑……………………………………………………...… 2.6 

MA: 𝜽(𝑩) = 𝟏 + 𝜽𝟏𝑩 +⋯+𝜽𝒒𝑩
𝒒……………………………………………………..… 2.7 

The seasonal components are: 

Seasonal AR: 𝝋(𝑩𝑺) = 𝟏 −𝝋𝟏𝑩
𝑺 −⋯− 𝝋𝑷𝑩

𝑷𝑺…………………………………....…… 2.8 

Seasonal MA: 𝝑(𝑩𝑺) = 𝟏 + 𝝑𝟏𝑩
𝑺 +⋯+𝝑𝑸𝑩

𝑸𝑺………………………………………… 2.9 

The preliminary values of autoregressive order p, the order of differencing d, the moving 

average order q and their corresponding seasonal parameters P, D and Q were estimated with the 

help of anomalies identified from a time plot of the data. When preliminary values of D and d 
have been fixed, the Autocorrelation Function (ACF) and the Partial Autocorrelation Function 

(PACF) were checked to confirm that the values of P, Q, P and q were acceptable stating 

parameters for the model (Stoffer and Dhumway, 2010). The model was then tentatively 

generated with the estimated parameters and the corresponding standard errors. The predicted 

models were validated using historical data from January 2014 - December, 2020. 

 

3. Results and Discussions  

3.1 Result 

The model for the three Load Tariff monthly time series was based on the ideas of the 

Box-Jenkins methodology. This methodology seeks to fit a Seasonal Auto Regressive Integrated 

Moving Average Model to the given series. The data was decomposed into its trend, seasonal and 

random components as presented in Figures 3.1 to 3.3 

 
Fig. 1.  Decomposition of additive time series for the Special Load Tariff Customer 
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Fig. 2. Decomposition of additive time series for the Non-Special Load Tariff Customer 
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Fig. 3.  Decomposition of additive time series for the Prepaid Load Tariff Customer 

 

The results obtained by following the modeling procedure outlined in Section 2.3 are shown in 

Tables 1 and 2. Three distinct models were produced for each load tariff and the entire region. 

The adequate model for each load tariff was obtained using the F-criterion (the least or minimum 

sum of squared estimate of error).   

Table 1 - Model for three Load Tariff Data 

Type of 

Customer 
Parameters 

Models 

SARIMA 

(0,1,1)×(0,0,2) 

SARIMA 

(1,1,0)×(0,0,2) 

SARIMA 

(1,1,1)×(0,0,2) 

Special Load 

Tariff Data 

φ1  -0.4808 ± 0.20 -0.0118±0.33 

ψ1 -0.6991 ± 0.17  -0.6930± 0.24 

Ψ1 0.1245 ± 0.27 0.1212 ± 0.26 0.1240±0.27 

Ψ2 0.4338± 0.38 0.4294± 0.40 0.4331±0.38 

SSE 606.64 699.96 606.74 

Non-Special 

Load Tariff 

Data 

φ1  -0.4318 ± 0.208 -0.0692 ± 0.281 

ψ1 -0.8044 ± 0.148  -0.0818 ± 0.160 

SSE 1671.518 2144.627 1666.005 

Prepaid Load 

Tariff Data 

δ   0.2187 ± 0.275 

φ1  -0.3957 ± 0.653 -0.4158 ± 0.225 

ψ1 -0.3589 ± 0.205 -0.0035 ± 0.208  

Φ1 0.3328 ± 0.232 -0.3661 ± 0.235 0.3490 ± 0.231 

SSE 93.66789 91.47522 88.54043 

 

 

Table 2 - Models for the Regional Load Tariff Data 

Parameters 
Models 

SARIMA (1,1,3) SARIMA (2,1,0) SARIMA (2,1,1) 

φ1 -0.1516 ±0.710304 -0.4275 ± 0.200704 0.0276 ± 0.380632 

φ2  -0.4874 ± 0.197568 -0.3259 ± 0.288708 

ψ1 -0.3973 ± 0.689528  -0.6291 ± 0.398076 

ψ2 -0.5061 ± 0.148372   

ψ3 0.1959 ± 0.312228   

SSE 3607.437 3956.292 3726.168 

 

3.2 Generation and Validated of the Predicted Model 

From Table 1, the SARIMA (0,1,1) × (0,0,2) model was chosen for the special load tariff 

data because it has the least or minimum sum of squared estimate of error (SSE) which yields the 
least square of data regression line and the corresponding best model is written out as  

Xt− Xt−1 = εt+0.6991εt−1−0.087037εt−2−0.4338εt−24−0.3032696εt−25 ………...……… 3.1 

The SARIMA (1,1,1) model was chosen for the non-special load tariff data because it has 

the least/minimum sum of squared estimate of error (SSE) which yields the least square of data 

regression line with the best model. This is expressed as, 

Xt− Xt−1 = εt−0.8044εt−1…………………………………………………………………. 3.2 

The SARIMA (1,1,0) × (1,0,0) model was chosen for the prepaid load tariff data because 

it has the least/minimum sum of squared estimate of error (SSE) which yields the least square of 

data regression line and its best model is written out as 

Xt−0.5842Xt−1−0.4158Xt−2−0.3490Xt−12+0.2039Xt−13+0.1451Xt−14 = εt+0.2187…...…. 3.3 

Finally, the SARIMA (0,1, 1) × (1,1,3) model was chosen for the regional load tariff data 

because it has the least/minimum sum of squared estimate of error (SSE) which yields the least 

square of data regression line. The best model is written out as 

Xt−0.8484Xt−1−0.1516Xt−2 = εt−0.3973εt−1−0.5061εt−2+0.1959εt−3……………….…. 3.4 
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The models obtained were then validated by comparing the predicted result and the recorded 

results for the 84months period from January, 2014 to December, 2020 and the results for the four 

customers are presented in Figure 4. 

 

NOTE: SLT for Special Load Tariff; NSLT for Non-Special Load Tariff; PLT for Prepaid load 

Tariff; RLT for Regional Load Tariff 

Fig. 4. The percentage Error for the four Customers 

For the purpose of this study, an error of ≤1 GW/was chosen as a criterion to determine 

the relative difference in results between actual electricity consumption data and predicted data. 

From Figure 3.4, the results indicate that the predicted values of the model are close to the true 

value, ranging from -6.00% to 6.00%. The predicted electricity consumption for the Special Load 

Tariff group of customers resulted in 53.36±1.02 GW/HR @ 95% confidence level whilst the 

predicted electricity consumption for the Non-Special Load Tariff group of customers resulted in 

25.65±0.34 GW/HR @ 95% confidence level. Also, the predicted electricity consumption for the 

Prepaid customers had an average use of 14.95±0.67GW/HR @ 95% confidence level as a 

monthly amount of 101.09±0.23 GW/HR @ 95% confidence level was used for the whole region. 

The models obtained are, therefore, adequate to be used to forecast monthly electricity 

consumption for all the three Load Tariff Customers. In conclusion, it can be summarized that, 

with a confidence level of 95%, models developed produced a reliable result that can help guide 

in the future estimation of electricity to be used by the various categories of customers as well as 

a means of revenue projection and expansion of the company’s customer network base. 

 

 

5. Conclusion  

In conclusion, it can be summarized that, with a confidence level of 95%, models developed 

produced reliable results that can help guide in the future estimation of electricity to be used by 

the various categories of customers as well as a means of revenue projection and expansion of the 

company’s customer network base.  These time series models have been proven to expose and 
expatiate electricity demand for the region in future years or months. The models have been 

refined and validated to ensure consistency in outcome results. 
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