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ABSTRACT  

This research examines the impact of various sampling techniques on the performance of classification 

models in the context of imbalanced datasets, employing the body performance dataset as a case study.  

Many studies in this field analyze the effect of sampling techniques on a model performance, however 

they often begin with imbalance datasets, lacking a balanced baseline for comparison. This research 

addresses that gap by simulating an imbalanced dataset from an originally balanced dataset, obtaining a 

target reference point for evaluating the effectiveness of the sampling methods. The dataset is categorized 

into three versions: (1) a normal distribution, (2) a simulated imbalanced distribution, and (3) a 

synthesized dataset achieved through various data sampling techniques, including oversampling with 

Adaptive Semi-Unsupervised Weighted Oversampling (A-SUWO), undersampling with Tomek Link, and 

hybrid sampling combining both techniques. The primary objective of this research is to identify sampling 

techniques, when combined with model performance, closely match the performance observed in the 

original balanced dataset. Based on all experiments using Decision Tree, Random Forest, and K-Nearest 

Neighbors (KNN) as classifiers, both A-SUWO and Tomek Link led to overfitting due to discernible gap 

between the training and testing accuracy, averaging 0.21304. Despite overftting and general 

performance issue, the undersampling with Tomek Link obtained highest test accuracy (0.65023), 

outperforming A-SUWO (0.62883) and the hybrid approach (0.63568) on average. These findings 

highlight the importance of appropriate sampling techniques and optimizing model performance in 

imbalanced datasets. 

Keywords: A-SUWO, Body Performance Data, Data Sampling Techniques, Imbalanced, Tomek Link. 
 

1. Introduction 

Data is a crucial asset and key resource in performing research and development. It is 

favored for the data to be balanced and accurate as data plays a significant role in making 

strategic decisions (Hosen et al., 2024; Ionescu & Diaconita, 2023). However, in many real-

world scenarios, some data may suffer from skewed or imbalanced distributions (Aguiar et al., 

2024; Amin et al., 2016; Hasib et al., 2020). An imbalanced distribution occurs when one class 

(majority class) contains significantly more samples than the other (minority class) (Thabtah et 

al., 2020a; Wang & Yao, 2012). Typically, the majority class comprises negative samples, while 

the minority class includes positive samples (Haibo He & Garcia, 2009). An example of 

imbalance data distribution is in detecting rare but important diseases, where the number of 

cases with rare disease is usually much smaller compared to the number of healthy cases. 

Imbalance data problems can occur in datasets with only two classes, known as binary class, as 

well as in datasets with more than two classes, known as multi-class (Ali et al., 2019). 

The presence of imbalance data distribution poses challenges for machine learning 

algorithms in performing tasks, such as classification, due to performance bias. Traditionally, 

the primary objective for classification algorithms is to maximize the overall acccuracy. 

However, when dealing with imbalanced datasets, this approach may not be suitable, as the 

majority class tends to dominate the overall distribution of the dataset. This leads to classifers 

achieving higher accuracy for the majority class while exhibiting lower accuracy for the 

minority class (Kaur et al., 2019; Thabtah et al., 2020b). Research investigating the impact of 

class imbalance on classification models discovered that the relationship between the class 

imbalance ratio and the classifier accuracy follows a convex curve. This implies that as the 

imbalance ratios increase, the decline in classifier accuracy becomes more pronounced (Thabtah 
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et al., 2020b). Therefore, it is crucial to address these imbalance issues before performing model 

training to ensure fair and accurate predictions across all classes.  

Previous research suggest that addressing imbalance data can be categorized into three 

groups: external approaches (data level), internal approaches (algorithmic level), and hybrid 

approaches (Piyadasa & Gunawardana, 2023). External approaches aim to balance datasets 

using sampling methods, which may involve undersampling the majority class, oversampling 

the minority class, or a combination of both sampling, known as hybrid sampling. Internal 

approaches focus on enhancing the classification algorithm without altering the dataset. This 

approach can be done through cost-sensitive learning and ensemble methods. Hybrid 

approaches combine the strength of both external and internal approaches while considering 

their respective weakness. Researchers mostly used external approaches to address imbalance 

data due to the classifier independence and generalizability (López et al., 2013). In contrast, 

internal approaches result in the dataset becoming heavily dependent on the modified classifier. 

For external approaches, various methods can be utilized for oversampling, 

undersampling, and hybrid sampling (Khushi et al., 2021). In oversampling, methods such as 

Random Oversampling (ROS) aim to increase the minority class samples by randomly 

duplicating existing ones. However, the ROS approach can lead to overfitting. The Synthetic 

Minority Oversampling Technique (SMOTE) address this issue by generating new samples 

through interpolation of existing minority class samples. While SMOTE reduce the risk of 

overfitting, it can introduce noisy and borderline samples, potentially causing overlap with other 

classes (Ali et al., 2019). Research by (Nekooeimehr & Lai-Yuen, 2016) highlights this issue 

and proposes Adaptive Weighted Semi-Unsupervised Weighted Oversampling (A-SUWO) as a 

solution. A-SUWO employs a semi-unsupervised hierarchical clustering approach and 

adaptively determines the oversampling size for each sub-cluster based on its classification 

complexity and cross-validation. Additionally, A-SUWO considers the majority class during 

both the clustering and oversampling stages.  

For undersampling, Random Undersampling (RUS) is a basic undersampling method 

which randomly removes samples from the majority class based on a pre-defined sampling rate. 

However, RUS can lead to the loss of crucial information, potentially degrading the classifier 

performance. To address this issue, researchers have introduced the concept of informative 

undersampling, where only the least significant majority samples will be removed. An example 

of this approach is the concept of Tomek-Link pair, introduced by Ivan Tomek. A Tomek-Link 

pair is a boundary pair within a data distribution that is known to promote noise. Removing this 

pair can prevent the decision boundary from shifting in the wrong direction (Devi et al., 2020).  

In hybrid sampling, one effective method is the combination of SMOTE and Tomek-

Link. This combination takes the best from each method. While SMOTE addresses class 

imbalance by oversampling the minority class through interpolation, its weaknesses in 

overgeneralization and generation of noisy data can be mitigated by the Tomek-Link 

undersampling method. Tomek-Link cleans noisy data from the majority class that lies closest 

to the minority class. By combining SMOTE and Tomek Link, this hybrid method enhances 

accuracy better than either method alone (Hairani et al., 2023). 

Many studies in the context of imbalanced datasets employ various sampling techniques 

and datasets, with the objective to examine differences in model performance before and after 

applying sampling methods (Ishaq et al., 2021; Mohammed et al., 2020; Sawangarreerak & 

Thanathamathee, 2020; Shamsudin et al., 2020). However, the limitation of these studies is that 

they often begin with originally imbalanced datasets. As a result, while improvements in 

performance are observed after applying sampling techniques, these studies lack a ”target” 

baseline for comparison, specifically the performance of the model when trained on a dataset 

that is originally balanced. The absence of a balanced reference point makes it difficult to 

evalute the effectiveness of the sampling methods in improving the model performance in 

comparison to a balanced dataset. 

To address this issue and given the ability of A-SUWO and Tomek Link, this research 

will employ both methods to a body performance dataset sourced from Kaggle. Although the 

dataset is originally balanced, it will be simulated to be imbalanced to reflect real-world 

imbalance scenarios. The objective of this research is to identify the most effective sampling 
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techniques that can closely match the performance of the original balanced dataset when applied 

to the simulated imbalanced dataset. Three dataset distributions will be analyzed: (1) normal 

distribution, (2) simulated imbalance distribution, and (3) synthesized distribution using 

oversampling with A-SUWO, undersampling with Tomek Link, and hybrid sampling with both 

A-SUWO and Tomek Link. Classifiers, including Decision Tree, Random Forest, and KNN, 

will be utilized to evalute their performance using accuracy, precision, recall, and F1-score 

metrics. By systematically assessing these sampling techniques, the research seeks to determine 

the best approach for addressing the problem of class imbalance across diverse machine 

learning algorithms. 

 

2. Literature Review 

Traditional machine learning techniques, which often assume that the distribution of 

instances across classes is about equal, are very different from the field of learning from 

imbalanced data. However, in practical situations, certain groups are significantly more 

common than others, leading to an unequal distribution. Class imbalance is a major problem in 

machine learning, especially in fields like cancer diagnosis, fraud detection, and other 

applications where the minority class represents uncommon but extremely important cases. A 

class imbalance can have serious consequences for model performance and decision-making 

since it frequently results in biased learning models that prioritize the majority class while 

occasionally completely ignoring the minority class. Furthermore, the most important classes 

for research purposes are frequently the ones that are underrepresented in imbalanced datasets. 

In order to overcome the difficulties presented by unbalanced datasets, researchers have 

conducted extensive studies and developed algorithms to address the challenges posed by 

imbalanced datasets. Addressing this problem is crucial, as the reliability and applicability of 

machine learning systems in critical domains are directly impacted by their performance in 

imbalanced scenarios (Ghosh et al., 2024; Johnson & Khoshgoftaar, 2019). 

(Mohammed et al., 2020) conducted experiments using the “Santander Customer 

Transaction Prediction” dataset, which features imbalanced binary classes aimed to predict 

specific customer transaction regardless of the transaction amount. The study compared two 

resampling methods, Random Oversampling (ROS) and Random Undersampling (RUS), to 

address the imbalance. Various classifiers were utilized for both resampling methods, including 

Support Vector Machine (SVM), Gaussian Naïve Bayes (NB), Decision Tree (DT), and 

Random Forest (RF). To measure performance, the study used various evalution metrics such as 

accuracy, precision, recall, F1-score, and ROC. The findings revealed that oversampling 

performed better than undersampling. Specifically, the RF classifier with ROS achieved an 

accuracy of 0.998, precision of 0.999, recall of 0.997, F1-score of 0.998, and ROC score of 

0.998. 

(Shamsudin et al., 2020) investigated the performance of a classification model by 

combining the method of oversampling and undersampling methods for detecting the fraud 

cases in the “credit card fraud detection” dataset. The study utilized Random Undersampling 

(RUS) and combined with various oversampling techniques, including SMOTE, ADASYN, 

Borderline SMOTE, SVM-SMOTE, and Random Oversampling (ROS). The Random Forest 

(RF) algorithm was used to evaluate the dataset, with precision, recall, and F1-measure as the 

evaluation metrics. The findings revealed that the combination of oversampling and 

undersampling methods improved the model’s performance, with an average of 0.80% in 

precision, recall, and F1-measure value. 

(Sawangarreerak & Thanathamathee, 2020) proposed a combined sampling technique 

using random oversampling and Tomek Link to improve the performance of imbalanced 

classification in university student depression data.  The classifier used in this study is the 

Random Forest model. The dataset utilized in the study comprises 1,549 examples, along with 

an additional 165 examples unrelated to the original dataset, collected from  accounting course 

students over four years. The performance of the model was evaluated using accuracy, 

precision, recall, and F-measure. The experiment results demonstrated that the proposed method 

outperformed individual sampling techniques, with an accuracy of 94.17%, an average precision 

of 91.18%, average recall of 92.08%, and an average F-measure of 91.62%. 
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(Ishaq et al., 2021) conducted an experiment on a cardiovascular patient survival dataset 

comprising 299 patients. The aim of the study was to identify significant features and effective 

data mining techniques to improve the accuracy of cardiovascular patient survival prediction. 

The study employed nine classifications models, such as Decision Tree (DT), Adaptive 

Boosting Classifier (AdaBoost), Random Forest (RF), Extra Tree Classifier (ETC), and many 

more. The models were evaluated using metrics such as accuracy, precision, recall, and F-score. 

SMOTE was utilized to address the class imbalance problem in the dataset. Additionally, 

significant features were selected using the RF model. The findings demonstrated that the ETC 

model outperforms other models, achieving an accuracy of 0.9262 accuracy with SMOTE. 

(Mqadi et al., 2021) proposed using a data-point approach to address imbalanced credit 

card dataset with SMOTE in machine learning classifiers namely SVM, Logistic Regression, 

Decision Tree, and Random Forest. The classifiers was evaluated using precision, recall, F1-

score, and average precision metrics. The results indicated that intially the model struggled to 

detect fraudulent transactions due to data imbalanced. However, after applying SMOTE, the 

predictive capabilities improved significantly, with the Random Forest and Decision Tree 

classifiers achieving the best performance. Specifically, precision score for the positive class 

improved by 10% for Random Forest and 42% for Decision Tree. Recall increased by 47% for 

Random Forest and 39% for Decision Tree, while F1-scores improved by 33% for Random 

Forest and 35% for Decision Tree. 

(Apostolopoulos, 2020) utilized SMOTE to generate minority class instances in an 

imbalanced Coronary Artery Disease (CAD) dataset. Initially, the public Z – Alizadeh Sani 

dataset, used for non-invasive CAD prediction, was analyzed. Artificial Neural Networks 

(ANN), Decision Trees, and SVM were employed to classify both the original and augmented 

datasets, with accuracy as the evaluation metric. The findings demonstrated that Random Forest 

outperformed the other classifiers, achieving an accuracy improvement from 84.44% to 89.06% 

after applying SMOTE. However, it was noted that SMOTE augmentation should be deeply 

examined before being used on medical datasets.  

Overall, the literature shows that there is no one-size-fits-all answer, even if great 

progress has been achieved in tackling the issues of class imbalance. When selecting a 

resampling or learning approach, concerns including dataset characteristics, domain-specific 

considerations, and computational cost should all be considered, according to critical research of 

the methodologies used in the works examined here. The theoretical and practical underpinnings 

of unbalanced learning research will be strengthened by incorporating new breakthroughs in 

online learning and hybrid models, as well as by doing a more comprehensive analysis of the 

ethical issues in high-stakes fields like healthcare.  

This research adds to this continuing discussion by investigating how different sampling 

strategies affect model performance through a novel method by beginning with a balanced 

dataset and simulating imbalanced circumstances to establish a benchmark for assessment. To 

determine efficient strategies that reduce overfitting and maximize classification accuracy, the 

research compares the performance of hybrid approaches, Tomek Link undersampling, and 

Adaptive Semi-Unsupervised Weighted Oversampling (A-SUWO). The results highlight the 

significance of choosing and optimizing sampling strategies to match model performance with 

that of the original balanced dataset, demonstrating that Tomek Link undersampling obtained 

the highest test accuracy despite overfitting in other methods. 

 

3. Proposed Methods 

This study aims to compare outcomes derived from three distinct scenarios: (1) models 

trained on the initial balanced dataset, (2) models trained on the simulated imbalance dataset, 

and (3) models trained on the newly synthesized balance dataset created through various 

sampling techniques. The objective is to identify superior sampling techniques that can closely 

match the performance of the initial balanced distribution on the imbalanced dataset. The 

imbalanced dataset is a simulated version of the original balance body performance dataset, 

emulating a real-world scenario where data imbalance is a common issue. The procedural steps 

undertaken in this study are Illustrated in Fig 1. 
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Fig. 1. The Proposed Study Approach 

 

3.1. Data Collection 

This study used the body performance dataset that contains performance grades 

corresponding to different age groups alongside additional performance-related information. 

The dataset was sourced from Kaggle website, encompasses 13,393 rows of data and 12 distinct 

attributes. The ‘Class’ attribute serves as the label for classification purposes. The description of 

each attribute is shown in Table 1. 
Table 1 - Description of attributes in the body performance dataset 

No Attribute Description 

1 Age Person’s age in years 

2 Gender Person’s gender 

3 Height_cm Person’s height in centimeter (cm) 

4 Weight_kg Person’s weight in kilogram (kg) 

5 Body fat_% Body fat percentage 

6 Diastolic Diastolic blood pressure 

7 Systolic Systolic blood pressure 

8 GripForce Hand grip strength 

9 Sit and bend 

forward_cm 

The length that can be reach when a person 

sits and bends forward 

10 Sit-ups count Number of sit ups 

11 Broad jump_cm The horizontal jump distance in centimeter 

(cm) 

12 Class Grade of performance (A, B, C, D). ‘A’ 

indicated as best grade 

The Body Performance dataset was selected for this research to enable a comparative 

analysis between scenarios where algorithms are used to address class imbalance and a well-

balanced dataset. This dataset is ideal for controlled experimentation, as it initially depicts a 

balanced distribution, allowing the simulation of imbalanced distributions to mimics real-world 

imbalanced situations scenarios. This approach maintains the ability to compare outcomes 
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against the initial balanced distribution, ensuring a consisten and rigorous evaluation of the 

effectiveness of various balancing methods. 

 

3.2. Data Preprocessing 

Before implementing sampling techniques and evaluating the model’s performance, 

preprocessing steps are crucial due to the typical incompleteness and diversity in real-world 

data, which often involves aggregated, noisy, or missing values. In the body performance 

dataset, categorical attributes were transformed into numerical ones (e.g. transforming the 

‘Class’ attribute from A, B, C, D to 0, 1, 2, 3), and then dataset was partitioned based on its 

class labels, enabling a more precise Identification of outliers. By utilizing boxplot on each 

segmented dataset, numerous outliers were detected across various attributes. Given outliers 

potential impact on model performance, this study addresses outliers by replacing their values 

with the median value for each attribute. After handling outliers, the partitioned dataset was 

merged and undergoes normalization. Specifically, min-max normalization is employed, 

standardizing the diverse attribute ranges to a specific interval, usually between 0 and 1. The 

min-max normalization formula can be seen in Eq.(1): 

 
            

       
          

 
(1) 

Following the implementation of min-max normalization, the dataset will be split, with 

80% assigned to the training set and 20% to the test set. The training set will then be categorized 

into two different versions: (1) a normal distribution and (2) a simulated imbalanced 

distribution. The original body performance dataset is already balanced. However, for this 

study, the dataset will be simulated to be imbalanced. The simulated imbalanced distribution 

allows researchers to compare model performance on the balanced dataset as a reference to the 

simulated imbalanced distribution. By simulating the imbalanced distribution of the original 

dataset, researchers aim to identify the most suitable sampling method that can give 

performance close to the model’s performance on the original balanced dataset.  

The simulated imbalance dataset will be created by adjusting the distribution percentage 

for each ‘Class’ attribute. These adjustments are determined based on the results of precision 

and recall obtained from the original dataset. The objective of this approach is to achieve a 

balance between precision and recall within the dataset, thereby enhancing the overall results. 

The process for simulating imbalance in the original dataset are as follows. 

 

Fig. 2. Process For Simulating The Imbalanced Data Distribution 
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In this study, both value of n and k are set to 0.10 or 10%. The chosen value is to ensure a 

manageable and moderate difference. To calculate the percentage of each class, a process based 

on the difference between precision and recall will be utilized. The process is outlined as 

follows. 

 

Fig. 3. Process For Calculating The Percentage Of Each Class  

 Based on the approach above and the result within Section 4, Table 9, the percentage of 

preserved data of Class within simulated imbalanced class of Body Performance data, would be 

32% for Class A, 44% for Class B, 60% for Class C, 100% of Class D. The proportion would be 

looked as follows. 
 

Fig. 4. The Simulated Imbalanced Distribution 

 

3.3. Data Sampling Techniques 

3.3.1. Oversampling: Adaptive Semi-Unsupervised Weighted Oversampling (A-SUWO) 

A-SUWO, introduced by Nekooeimehr and Lai-yuen (Nekooeimehr & Lai-Yuen, 2016), 

is an oversampling method design to address imbalanced datasets. This method employs a semi-

unsupervised hierarchical clustering approach to cluster minority instances. It will dynamically 

determine the oversampling size for each sub-cluster by considering its classification 

complexity and cross-validation. Oversampling the minority instances will be based on their 

Euclidean Distance to the majority class. The primary goal of A-SUWO is to identify hard-to-

learn instances, focusing on those minority instances from each sub-cluster that reside close to 

the decision boundary. Moreover, A-SUWO ensures the avoidance of generating synthetic 

minority samples that might overlap with the majority class by considering the majority class 

during both the clustering and oversampling phases. 
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Fig. 5. Adaptive Semi-Unsupervised Weighted Oversampling (A-SUWO) 

The use of the Adaptive Semi-Unsupervised Weighted Oversampling (A-SUWO) 

technique to rectify class imbalance in a dataset is illustrated in Figure 5. In this illustration, the 

orange circles represent examples of the majority class, and the blue dots represent cases of the 

minority class. Sub-clusters within the majority class are shown by the smaller orange circles, 

while the cluster of minority class samples is highlighted by the huge blue circle. The synthetic 

samples produced by the A-SUWO technique, which aims to create samples close to the 

decision border where minority class instances are underrepresented, are depicted by the green 

dots inside these sub-clusters. In order to prevent the introduction of noisy or redundant 

instances, A-SUWO dynamically modifies the quantity of synthetic samples for each sub-

cluster, giving priority to regions with higher classification complexity. It also makes sure that 

the generated synthetic samples do not overlap with the majority class. By carefully placing the 

synthetic samples, the classifier is better able to distinguish between the classes, which solves 

the problems caused by unbalanced datasets and increases model accuracy. 

A-SUWO is superior to conventional oversampling methods in a number of ways. 

Through the use of a semi-unsupervised hierarchical clustering technique, A-SUWO 

dynamically modifies the degree of oversampling according to the classification complexity of 

each sub-cluster, thereby adapting to the dataset's complexities. In order to address the problem 

of class imbalance, where simple random oversampling could result in overfitting or the 

creation of redundant synthetic samples, this makes sure that the most difficult minority 

instances—those close to the decision boundary—are oversampled more successfully. 

Furthermore, A-SUWO avoids the creation of synthetic samples that might overlap with the 

majority class, a typical issue with many oversampling techniques, by accounting for the 

majority class during both the clustering and oversampling phases. This method improves the 

generalization of the model, making A-SUWO an effective solution for imbalanced data. The 

method’s ability to balance the dataset in a targeted and thoughtful way, while avoiding 

common pitfalls like noisy or biased synthetic data, makes it particularly well-suited for real-

world applications where imbalanced data is prevalent (Sun et al., 2020). 

To implement A-SUWO, the smote-variants package was utilized. This package provides 

a python implementation of 85 different oversampling techniques that can be used for 

developing solutions in the field of imbalanced learning (Kovács, 2019). By utilizing the smote-

variants package, researchers can experiment with various oversampling techniques, unlike 

previous oversampling techniques which offered only a limited number of open-source options. 

Based on the smote-variants package documentation, Table 2 provides the specific parameter 

values used to implement A-SUWO in this study. 
Table 2 - Parameters for A-SUWO implementation 

Method Parameters 

A-SUWO oversampler: A-SUWO, 

oversampler_params: (random_state: 42, 

n_neighbors: 3) 
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3.3.2. Undersampling: Tomek Link 

Developed by Ivan Tomek (Liu et al., 2018), Tomek Link is an undersampling method 

that works by removing instances from the majority class that are close to the minority class. 

Tomek Link utilized the nearest neighbor rule to find samples that should be removed. 

Considered as an improved Condensed Nearest Neighbor (CNN), Tomek Link detects pairs of 

data points (x1, x2) where x1 belongs to minority class and x2 represents the majority class. By 

calculating the Euclidean distance d(x1, x2), a pair of (x1, x2) is considered as Tomek Link if no 

other instance x3 exists where d(x1, x3) < d(x1, x2) or d(x2, x3) < d(x1, x2) (E. F. ; Swana et al., 

2022). The visual representation of Tomek Link is shown in Fig 3. 

By eliminating instances of the majority class that are close to the minority class's 

decision boundary, Tomek Link is a useful undersampling method that tackles the problem of 

class imbalance. The Condensed Nearest Neighbor (CNN) algorithm is enhanced by this 

technique, which focuses on "borderline" majority class samples that are near minority class 

occurrences. Tomek Link's main advantage is that it may tighten the decision boundary without 

removing important data because it only eliminates majority class instances that are most likely 

to cause noise and obstruct model training. Tomek Link makes sure that only situations where 

the majority class sample is too close to the minority class are eliminated by identifying pairs of 

instances where one belongs to the minority class and the other to the majority class, then 

calculating their Euclidean distance. By successfully minimizing the overlap between the two 

classes, this procedure produces a model that is more accurate and has better generalization. 

Furthermore, Tomek Link minimizes the possibility of data loss, a typical problem with other 

undersampling techniques, while maintaining the overall distribution of the majority class by 

concentrating on the examples that are closest to the decision boundary (E. F. Swana et al., 

2022). 
 

Fig. 6. Tomek Link 

With red squares signifying the dominant class and blue circles representing the minority 

class, Fig 6 illustrates how to use the Tomek Link undersampling technique to address class 

imbalance in a dataset. Although there are few examples of the majority class near the decision 

boundary, the majority class is generally situated distant from the minority class in the first 

panel (left). Tomek Links, or pairs of points where one belongs to the minority class and the 

other to the majority class based on their Euclidean distance, are highlighted in the second panel 

(middle) as key majority class examples. These occurrences are eliminated because they are 

either unnecessary or noisy. The Tomek Link technique refines the decision border between the 

two classes by eliminating instances of the indicated majority class, as seen in the final panel 

(right). By decreasing overlap, minimizing noise, and concentrating the learning process on the 

more instructive examples, this procedure improves classifier performance and eventually 

produces a more accurate model. 

To implement Tomek Link, the imbalanced-learn package is utilized. This package offers 

a number of re-sampling techniques commonly used to address class imbalance in datasets 

(Lemaître et al., 2016). Based on the imbalanced-learn package documentation, Table 3 presents 

the specific parameter value used to implement Tomek Link in this study. 
Table 3 - Parameters for Tomek Link implementation 

Method Parameters 

Tomek Link sampling_strategy: not minority 
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3.4. Classification and Parameter Tuning 

3.4.1. Classification 

In this study, after preprocessing the dataset and using sampling methods to address 

imbalances, three models are proposed to handle both normal and imbalanced distribution 

scenario in the body performance dataset, which are Decision Tree, Random Forest, and KNN.  

 

3.4.1.1. Decision Tree 

Decision Tree is a machine learning algorithm that organizes data in a hierarchical, tree-

like structure such that nodes represent as features, branches symbolize decision paths, and leaf 

nodes show outcome classes. This algorithm creates a model like tree that uses input variables 

to create multiple predictions on each leaf node (Rajaguru & Sannasi Chakravarthy, 2019). The 

Decision Tree structure is visually represented in Fig 7. 
 

Fig. 7. Decision Tree 

The Decision Tree approach was used for this investigation due to its low computational 

complexity and suitability for evaluating complicated datasets (Priyanka & Kumar, 2020). 

Decision trees are very effective for exploratory research since they are one of the fastest 

methods for creating or detecting new features. Furthermore, since the approach is robust to 

missing values and unaffected by outliers, it necessitates relatively fewer steps for data 

pretreatment and cleaning. Due to these characteristics, Decision Trees are a great option for 

assessing the dataset since they strike a compromise between performance, interpretability, and 

simplicity, guaranteeing accurate findings even when dealing with imperfect or raw data 

(Bansal et al., 2022). 

 

3.4.1.2. Random Forest 

Random Forest, developed by Breiman in 2001, is a supervised classification algorithm 

that works by creating multiple n decision trees from random subsets of the training data and 

predictor variables. Each tree’s result is combined to make the final prediction, resulting in 

substantially higher accuracy compared to a single decision tree model (Speiser et al., 2019). 

Additionally, increasing the number of trees enhances accuracy and reduces overfitting risk, 

unlike other methods (Madeeh & Abdullah, 2021). The visual representation of Random Forest 

is depicted in Fig 8. 



Grady et al …                                       Vol 6(2) 2025: 1101-1120 

1111 

 

 

Fig. 8. Random Forest 

Random Forest is a widely used ensemble method known for its consistent performance 

across various machine learning tasks, which is why this study selected it. As an ensemble 

technique, Random Forest enhances accuracy and reduces overfitting by aggregating the 

predictions from multiple decision trees. Due to its simplicity, interpretability, and ability to 

handle large datasets with diverse features, it is considered one of the leading algorithms and 

often outperforms some deep learning models in specific applications (Grinsztajn et al., 2022).  

 

3.4.1.3. K-Nearest Neighbor (KNN) 

KNN is a supervised machine learning algorithm used mostly for classification tasks. The 

model has a variable parameter, k, which quantifies the nearest points or neighbors considered. 

KNN identifies k nearest neighbors by calculating distances between points using standard 

Euclidean distance d(x, y). After evaluating these k nearest neighbors, a majority voting rule is 

used to determine the class occurrence. The class with the most number of observations with its 

neighbor is the final classification (Madeeh & Abdullah, 2021; Uddin et al., 2022a). 
 

Fig 9. K-Nearest Neighbor (KNN) 

As depicted in Fig 9, employing a value of k = 3 determines the number of nearest 

neighbors taken into consideration for the new instance. In this case, it identifies 3 nearest 

neighbors, where 2 belong to class A and 1 belongs to class B. The KNN algorithm will then 

utilize the majority voting rule to classify the new instance as class A. 

This study employed the K-Nearest Neighbors (KNN) algorithm due to its simplicity and 

widespread use in machine learning. KNN is one of the easiest algorithms, utilizing instance-

based learning to make predictions based on the similarity to neighboring data points. Its 

simplicity and ease of understanding make it a popular choice for various machine learning 

applications (Uddin et al., 2022b). Moreover, KNN is highly adaptable and performs well in 

situations where there is a non-linear relationship between features and target labels (Halder et 
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al., 2024). With these advantages, KNN is a valuable addition to this study for analyzing the 

dataset and comparing the performance of different algorithms. 

 

3.4.2. Parameter Tuning 
Table 4 - List of parameters of each model 

Model Parameters 

Decision Tree criterion, max_depth, min_samples_split, 

min_samples_leaf 

Random Forest n_estimators, criterion, max_depth, 

min_samples_split, min_samples_leaf 

KNN n_neighbors, weights, metric 

Table 4 provides a list of parameters for each model, where the optimal values will be 

found by using Grid Search. In this study, various scenarios will be explored, including normal 

distribution, imbalanced distribution, oversampling with A-SUWO, undersampling with Tomek 

Link, and hybrid sampling with A-SUWO and Tomek Link. Detailed information regarding 

these parameter values for each scenario can be found in Section 4. 

 

3.5. Performance Evaluation 

The evaluation of the model’s performance will utilize the fundamental concept of a 

confusion matrix. The confusion matrix is a tabular representation employed to illustrate how 

well a classification method performs on a dataset where the actual values are known. It 

effectively displays the classification outcomes for true and false instances (Hairani et al., 

2023). The table representing the confusion matrix table is presented in Table 5. 
Table 5 - Confusion matrix table 

 Actual (+) Actual (-) 

Prediction (+) True Positives (TP) False Positives (FP) 

Prediction (-) False Negatives (FN) True Negatives (TN) 

The accuracy metric is a commonly used measure that assesses the overall correctness of 

a model’s prediction. However, when addressing the imbalance problem in datasets, relying 

solely on accuracy for evaluating the model’s performance is inadequate due to the model might 

achieve a higher accuracy for the majority class but lower accuracy for the minority class. 

Therefore, to provide a more comprehensive evaluation, precision, recall, and f1-score will also 

be utilized as evaluation metrics in this study. 

Precision evaluates the model’s ability to precisely predict positive classes from the total 

positive class predictions. Meanwhile, recall measures the model’s accuracy in correctly 

identifying positive class from the total actual positive class. The f1-score represents the 

harmonic mean of precision and recall, providing a balanced assessment of both metrics. The 

formula for each metric can be seen in Eq.(2), Eq.(3), Eq.(4), Eq.(5): 
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4. Results and Discussions  

Normal Distribution 

In the initial phase of experimentation, the original dataset, which exhibited a normal 

distribution, was utilized to assess the performance of the proposed models. A hyperparameter 

optimization process was conducted using Grid Search Cross Validation (CV) to identify the 

optimal combination of hyperparameters for each model. This procecss ensures the best-suited 
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hyperparameters are selected for each model. Table 6 provides a comprehensive summary of the 

parameter values selected for each model, as determined through the Grid Search CV procedure. 

Additionally, it includes the corresponding training accuracy achieved for each parameter 

configuration.  
Table 6 - Parameters and Train Accuracy For The Original Dataset With Normal Distribution 

Classifier Parameters Train Accuracy 

Decision Tree criterion: gini,  

max_depth: 12,  

min_samples_leaf: 10, 

min_samples_split: 2 

0.67911 

   

Random Forest criterion: entropy, 

max_depth: 40, 

min_samples_leaf: 1, 

min_samples_split: 2, 

n_estimators: 700 

0.73502 

   

KNN metric: l1, 

n_neighbors: 28, 

weights: distance 

0.64420 

The testing evaluation results for the normal distribution dataset, as shown in Table 7, 

indicate that Random Forest achieves the highest test accuracy of 0.74804, outperforming both 

the Decision Tree and KNN classifiers. This superior performance can be attributed to Random 

Forest's ensemble learning approach, which aggregates the predictions of several decision trees 

trained on arbitrary subsets of the data. This approach mitigates the risk of overfitting and 

enhance the model's ability to generalize effectively to new and unseen data. Additionally, 

Random Forest performs well across all classes, as evidenced by its consistently high precision 

and recall scores in Table 7, which are a result of its capacity to assess feature relevance and 

manage intricate feature interactions. In contrast, the decision tree model exhibits lower 

performance, with a test accuracy of 0.69279, due to its tendency to overfit the data. A single 

Decision Tree model can quickly grow overly intricate and sensitive to even slight changes in 

the data, leading to suboptimal performance, especially in classes where the model's decisions 

might not generalize well. Similarly, KNN demonstrates the lowest test accuracy of 0.64725, 

primarily due to its dependence on the distance between data points. This dependence can be 

greatly impacted by the scale and dispersion of the data.  
Table 7 - Testing Evaluation of Various Models For The Original Dataset With Normal Distribution 

Classifier Class Precision Recall F1-Score Test Accuracy 

Decision Tree 0 0.68 0.82 0.74 

0.69279 
 1 0.58 0.57 0.58 

 2 0.68 0.62 0.65 

 3 0.87 0.77 0.81 

      

Random Forest 0 0.71 0.86 0.78 

0.74804 
 1 0.64       0.62       0.63 

 2 0.78       0.68       0.73 

 3 0.88       0.84       0.86 

      

KNN 0 0.63            0.83 0.72 

0.64725 
 1 0.52       0.51      0.52 

 2 0.61       0.58       0.59 

 3 0.91       0.67       0.77 

 

Simulated Imbalance Distribution 

In the second experiment, the simulated imbalance dataset is employed to evaluate the 

performance of the proposed models. Grid Search CV is utilized to identify the optimal 

parameter values used for each model. The corresponding training accuracy achieved for each 

parameter configuration is presented in Table 8. 
Table 8 - Parameters and Train Accuracy For The Simulated Imbalanced Distribution 

Classifier Parameters Train Accuracy 

Decision Tree criterion: gini,  

max_depth: 10,  

0.66624 
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min_samples_leaf: 12, 

min_samples_split: 2 

   

Random Forest criterion: entropy, 

max_depth: 30, 

min_samples_leaf: 1, 

min_samples_split: 2, 

n_estimators: 350 

0.73448 

   

KNN metric: l1, 

n_neighbors: 62, 

weights: distance 

0.66703 

After testing all proposed models in this study, as depicted in Table 9, it is evident that 

the imbalance nature of the data negatively affects the performance of each model, leading to 

deteriorated accuracy across all metrics. However, by creating a custom preserved data 

percentage for each ‘Class’ column, as explained in Section 3.2, the precision and recall metrics, 

particularly for the KNN model, have been stabilized. The next step involves the 

implementation of oversampling and undersampling methods to address data imbalance and 

further enhance the overall model accuracy. 
Table 9 - Testing Evaluation of Various Models For The Simulated Imbalanced Distribution 

Classifier Class Precision Recall F1-Score Test Accuracy 

Decision Tree 0 0.68       0.71       0.69 

0.66405 
 1 0.55       0.49       0.52 

 2 0.59 0.69 0.63 

 3 0.87       0.77       0.82 

      

Random Forest 0 0.74       0.78       0.76 

0.72266 
 1 0.63       0.52       0.57 

 2 0.65       0.78       0.71 

 3 0.88       0.82       0.85 

      

KNN 0 0.67       0.75       0.71 

0.63307 
 1 0.52       0.44       0.48 

 2 0.53       0.73       0.62 

 3 0.93       0.61       0.74 

 

Oversampling with A-SUWO 

In response to the decline in model performance resulting from the simulated imbalanced 

distribution of the original dataset, several sampling techniques were utilized. The first 

technique employed was oversampling using the Adaptive Semi-Unsupervised Weighted 

Oversampling (A-SUWO) method. Table 10 presents the optimal parameter values determined 

through Grid Search CV for each model in the A-SUWO oversampling scenario, along with the 

corresponding training accuracy achieved for each configuration. The training accuracy results 

demonstrate that A-SUWO significantly improved model performance compared to the 

imbalanced training data, with an average accuracy increase of approximately 11%. This 

highlights the effectiveness of employing A-SUWO to improve the model’s learning process. 
Table 10 - Parameters and Train Accuracy For The Oversampling Case Using A-SUWO 

Classifier Parameters Train Accuracy 

Decision Tree criterion: entropy,  

max_depth: 18,  

min_samples_leaf: 1, 

min_samples_split: 2 

0.76729 

   

Random Forest criterion: entropy, 

max_depth: 30, 

min_samples_leaf: 1, 

min_samples_split: 2, 

n_estimators: 900 

0.85204 

   

KNN metric: l1, 

n_neighbors: 4, 

weights: distance 

0.77227 
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Despite the training data showing an improvement of over 11% on average, the testing 

data, as shown in Table 11, shows a significant decline with A-SUWO, dropping by an average 

of 4%. The gap between training and testing accuracies within A-SUWO is about 17%. The 

significant gap suggests that A-SUWO may contribute to overfitting, due to the notable 

difference in accuracy between the training and testing datasets. Following the performance of 

A-SUWO as an oversampling technique, the next technique to be examined involves the 

implementation of the undersampling technique using Tomek Link on the simulated imbalance 

dataset. 
Table 11 - Testing Evaluation of Various Models For The Oversampling Case Using A-SUWO 

Classifier Class Precision Recall F1-Score Test Accuracy 

Decision Tree 0 0.68       0.59       0.63 

0.59686 
 1 0.49      0.45       0.47 

 2 0.54       0.54       0.54       

 3 0.67       0.83       0.74 

      

Random Forest 0 0.73       0.74       0.74 

0.70996 
 1 0.60      0.55       0.57 

 2 0.70       0.69       0.70 

 3 0.79       0.87       0.83 

      

KNN 0 0.63      0.61       0.62 

0.57969 
 1 0.44           0.48   0.46 

 2 0.51       0.50       0.50 

 3 0.79       0.74       0.76 

 

Undersampling with Tomek Link 

Table 12 presents the parameter values utilized for all proposed models for the 

undersampling scenario employing Tomek Link, along with the corresponding training accuracy 

achieved for each configuration. The results indicate an average improvement in accuracy of 

over 4% when using Tomek Link, compared to the accuracy obtained with the imbalanced 

training data. However, this improvement is lower than the average training accuracy achieved 

using the A-SUWO technique. 
Table 12 - Parameters and Train Accuracy For The Undersampling Case Using Tomek Link 

Classifier Parameters Train Accuracy 

Decision Tree criterion: entropy,  

max_depth: 12,  

min_samples_leaf: 18, 

min_samples_split: 2 

0.70994 

   

Random Forest criterion: entropy, 

max_depth: 30, 

min_samples_leaf: 1, 

min_samples_split: 2, 

n_estimators: 900 

0.76941 

   

KNN metric: l1, 

n_neighbors: 26, 

weights: distance 

0.71303 

After evaluating all proposed models on testing data, as presented in Table 13, a decline 

in performance is observed when using the synthesized dataset with Tomek Link, dropping by 

an average of around 2%. The gap between training and testing data with Tomek Link is about 

8%. This implies that Tomek Link may be contributing to overfitting, given the notable 

difference between training and testing data accuracies.  
Table 13 - Testing Evaluation of Various Models For The Undersampling Case Using Tomek Link 

Classifier Class Precision Recall F1-Score Test Accuracy 

Decision Tree 0 0.64       0.74       0.68 

0.63269 
 1 0.52       0.38      0.44 

 2 0.60       0.60 0.60 

 3 0.73      0.83       0.78 

      

Random Forest 0 0.69       0.79       0.74 0.68607 
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 1 0.62       0.41       0.49 

 2 0.67       0.67       0.67 

 3 0.73       0.89      0.80 

      

KNN 0 0.64       0.76       0.70 

0.63195 
 1 0.52       0.34      0.41 

 2 0.57       0.62       0.60 

 3 0.76       0.82      0.79 

Comparing the testing accuracy results between Tomek Link and A-SUWO, as shown in 

Table 13 and Table 11, shows that most models, except Random Forest, have demonstrated 

improved testing accuracies. The Decision Tree model increased by 3%, KNN by 5%, while 

Random Forest decreased by 2%. Additionally, after comparing the training accuracy results 

between Tomek Link and A-SUWO, as depicted in Table 12 and Table 10, there is an increase 

in training accuracy across models, except for the Random Forest model. This suggests that the 

decline in Random Forest performance might be caused by overfitting. The more the model 

overfits, the more it defies the testing performance. 

 

Hybrid Sampling with A-SUWO and Tomek Link 

Table 14 provides a comprehensive overview of the training accuracy across all models 

and the list of parameters values utilized for the final sampling technique using combination of 

both A-SUWO and Tomek Link. 
Table 14 - Parameters and Train Accuracy For The Hybrid Sampling Case Using A-SUWO and Tomek Link 

Classifier Parameters Train Accuracy 

Decision Tree criterion: entropy,  

max_depth: 20,  

min_samples_leaf: 1, 

min_samples_split: 2 

0.80980 

   

Random Forest criterion: entropy, 

max_depth: None, 

min_samples_leaf: 1, 

min_samples_split: 2, 

n_estimators: 900 

0.88648 

   

KNN metric: l1, 

n_neighbors: 3, 

weights: distance 

0.84179 

Comparing the training accuracy results between hybrid sampling with A-SUWO and 

Tomek Link and the training accuracy achieved with the simulated imbalance data, shows an 

average improvement of over 15%, making it the highest average training accuracy compared 

with other sampling methods used in this study. The training results demonstrate the 

effectiveness of combining A-SUWO and Tomek Link sampling methods in improving the 

model’s ability to learn from the dataset. 
Table 15 - Testing evaluation of various models for the hybrid sampling case using A-SUWO and Tomek Link 

Classifier Class Precision Recall F1-Score Test Accuracy 

Decision Tree 0 0.66       0.65       0.65 

0.62112 
 1 0.53       0.42       0.47 

 2 0.58       0.61       0.59 

 3 0.69             0.82 0.75 

      

Random Forest 0 0.71       0.78       0.75 

0.70959 
 1 0.61       0.51       0.56 

 2 0.70       0.69       0.69 

 3 0.80       0.87       0.83 

      

KNN 0 0.58       0.65       0.61 

0.57633 
 1 0.43       0.40       0.41 

 2 0.52       0.53       0.52 

 3 0.78       0.74       0.76 

Through rigorous testing of the proposed models, as depicted in Table 15, there was a 

consistent decline in testing accuracy compared to the testing accuracy from the simulated, 
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averaging over 3%. Additionally, the gap between the training and testing accuracy is 

approximately 21%, a strong indication of overfitting in the results. This implies that while 

employing A-SUWO and Tomek Link as sampling techniques can enhance the model’s learning 

capabilities of the data, it also introduces the risk of overfitting. 

The findings show that class imbalance is a significant challenge to machine learning 

algorithms, as evidenced by the decline in performance of all classifiers when used with the 

generated imbalanced data. The risk of overfitting was apparent, with testing accuracy sharply 

declining, even though oversampling with A-SUWO and undersampling with Tomek Link 

demonstrated possible gains in training accuracy. This implies that although these sampling 

techniques can improve models' learning from the unbalanced data, they may also make models 

overly specific to the training set, which would impair their capacity to generalize to new data. 

Overfitting can result in subpar decision-making in real-world situations when predicted 

accuracy on fresh data is essential. Therefore, in order to reduce overfitting and enhance 

generalizability, the results emphasize the necessity of carefully balancing training and testing 

accuracy as well as the investigation of hybrid approaches that mix oversampling and 

undersampling techniques with other strategies. According to the findings of this study, data 

balancing methods such as A-SUWO and Tomek Link can improve model performance, but 

they should only be used sufficiently, especially in situations when there is a lot of imbalances, 

to prevent diminishing returns in real-world applications. 

 

Discussion 

Upon comparing the testing accuracy results between hybrid sampling using A-SUWO 

and Tomek Link and oversampling using A-SUWO alone, as shown in Table 15 and Table 11, it 

is evident that the testing accuracy of the Decision Tree has increased by 2%. In contrast, the 

training accuracy of the other proposed models has experienced a slight decrease. This suggests 

that there is no significant improvement between the use of A-SUWO alone and the hybrid 

sampling approach using A-SUWO and Tomek Link. Further examination of the testing 

accuracy results between hybrid sampling using A-SUWO and Tomek Link and undersampling 

using Tomek Link alone, as shown in Table 15 and Table 13, the testing accuracy of the KNN 

model has declined by 6%, the Decision Tree by 2%, while the Random Forest has shown an 

increase by 2%. This indicates that the implementation of the hybrid sampling approach using 

A-SUWO and Tomek Link only leads to an overall degradation in testing accuracy. By 

analyzing the three applied methods, namely A-SUWO, Tomek Link, and both combined, it can 

be inferred that all these approaches contribute to overfitting and an overal deterioration in 

performance. This is evident from the consistent decline in general testing accuracy across all 

sampling outcomes in comparison to the simulated imbalance scenario. Consequently, it 

becomes apparent that neither A-SUWO nor Tomek Link is well-suited for the simulated 

imbalanced dataset.  

The study's findings are in line with earlier investigations into the effects of resampling 

methods when dealing with unbalanced datasets. (Mohammed et al., 2020) for instance, 

discovered that Random Oversampling (ROS) enhanced Random Forest performance, which is 

comparable to the gains observed with A-SUWO in this investigation. The enhanced training 

accuracy seen in this work is consistent with (Shamsudin et al., 2020) demonstration that 

combining oversampling and undersampling techniques could enhance precision, recall, and F1-

score. 

The results of (Mqadi et al., 2021), who documented performance gains with 

undersampling techniques, are consistent with the undersampling method with Tomek Link 

used in this study. However, (Sawangarreerak & Thanathamathee, 2020) point out that 

undersampling might not always be the best option, as evidenced by the minor decline in 

performance with Random Forest utilizing Tomek Link. Overall, the results of this study 

support several findings in the literature and emphasize how crucial it is to balance sample 

strategies to prevent overfitting and enhance generalization. 
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5. Conclusion  

In this study, after simulating the distribution of the original dataset to be imbalance, it is 

evident that the presence of imbalance data can affect the performance of classification models. 

This can be seen by the discernible decline in metric results across all models. For example, a 

specific metric such as the accuracy value of the Random Forest model decreases from 0.74804 

on the original dataset to 0.69690 on the simulated imbalanced dataset, highlighting the 

importance of sampling techniques to address this issue. Various sampling techniques were 

applied, including oversampling with A-SUWO, undersampling with Tomek Link, and hybrid 

sampling using both A-SUWO and Tomek Link. Based on the proposed sampling techniques, it 

was found that employing A-SUWO and Tomek Link on the body performance data might lead 

to overfitting, as evidenced by the significant gap between training and testing accuracy. As an 

example, in the hybrid sampling case, the accuracy metric of the Random Forest model was 

0.88648, while its testing accuracy was 0.70959. This overfitting also led to general 

performance degradation, as seen by the drop in testing performance in the simulated imbalance 

and across all three methods.  

Despite the existence of overfitting when using A-SUWO and Tomek Link, a comparison 

of all experimented results indicated that the undersampling with Tomek Link produce better 

metric results than other methods. This is evident from the average testing score of 0.65023 for 

Tomek Link, compared to 0.62883 for A-SUWO and 0.63568 for the hybrid sampling approach. 

The study suggests that extending the implementation of A-SUWO and Tomek Link to other 

imbalanced datasets with varying imbalance ratios and data sizes would provide a more 

comprehensive evaluation of both methods. Additionally, exploring the combination of other 

oversampling and undersampling techniques could help identify optimal combinations suitable 

for diverse datasets. 
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