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ABSTRACT  

This research introduces the Genetic Adaptive Scheduling System (GASS), a novel framework designed to 

optimize scheduling in Flexible Job Shop Scheduling Problems (FJSP). Due to its complexity, FJSP 

presents significant challenges stemming from machine flexibility, dynamic routing, and operation 

precedence constraints. GASS addresses these challenges by incorporating real-time, dynamic data, 

enabling the system to adapt to machine downtimes, fluctuating job priorities, and process variability. 

Leveraging advanced genetic algorithm techniques, GASS integrates enhanced mutation and selection 

processes that dynamically adjust setup times, prioritize urgent tasks, and balance machine workloads to 

minimize makespan effectively. Empirical results demonstrate that GASS achieves up to a 45.3% 

reduction in makespan within the flexible packaging industry, showcasing its ability to enhance 

scheduling efficiency and adaptability. The research highlights the system’s scalability and potential 

applicability across diverse industries, including printing, electronics, pharmaceuticals, and food 

manufacturing, where operational flexibility and efficiency are critical. By bridging existing gaps and 

integrating real-time constraints into scheduling models, GASS provides practical solutions for modern 

manufacturing environments. The findings contribute to the advancement of optimization techniques in 

FJSP, offering valuable insights for researchers and practitioners seeking efficient, scalable, and 

adaptive scheduling systems. 

Keywords: Flexible Job Shop Scheduling, Genetic Adaptive Scheduling System, Dynamic Scheduling 

Optimization, Manufacturing Process Efficiency, Real-Time Production Scheduling. 

 

1. Introduction  

Due to its relevance  to efficient resource and production time allocation, Flexible Job 

Shop Scheduling (FJSS) has come to the forefront of many modern manufacturing research 

efforts. The FJSS problem belongs to optimization problems and is an NP-hard problem that 

becomes  more complex due to the consideration of dynamic factors in real production 

environments (Psarommatis, 2020; Shao, 2021; Türkyılmaz, 2020; F. Zhang, 2021, 2023; 

Zhuang et al., 2019). As a powerful metaheuristic approach, genetic algorithms (GA) have been 

successfully used to address this issue. The VSH developed a mathematical model for FJSS, 

whose objective function is the maximization of total profit, which accounts  for the cost of raw 

material and selling price, as well as the changing demand throughout each period. This 

methodology effectively  identifies the economical production quantity on different machines 

to fulfill customer demand at each period (Awad, 2021; Luo, 2020; Xu, 2020). 

Moreover, a comprehensive scheduling model would incorporate dynamic factors—most 

importantly, setup times, job priorities, and machine downtimes that can change throughout  an 

operation. Consequently, the scheduling system has the flexibility  to accommodate fluctuating 

production conditions in real time, resulting in enhanced operational efficiency (Y. Li et al., 

2022). In this  context, GA-based approaches have demonstrated superior schedule quality, 

taking into account the actual dynamics of the production environment. 

The application of GA for FJSS scheduling taking dynamic factors into account has been 

investigated in few industrial case studies under the heading of practical implementation. It has 

been shown that it enhances the efficiency of production and makes it easier to adapt to 
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changes in demand and operating conditions. Hence, the use of GA in FJSS scheduling is a 

useful approach to solve complex problems in dynamic manufacturing environment. 

There is a great variety of problems, ranging from simple to very complex ones but the 

Flexible Job Shop Problem (FJSP) in particular  - or more general solutions named General 

manufacturing scheduling problem GSTP. FJSP entails more complex task scheduling because 

of the necessity for processing different products using various machines and with distinct 

operating sequences. Efficient scheduling is also very important to make the most of your 

resources and minimize lead times and production overall. Fig. In this example given in Fig. 1, 

the FJSP scheduling problem is a real-world challenge of a flexible packaging manufacturing 

environment where each job presents an intricate structure and demands several operations to be 

conducted by undistinguishable machines available at the production shop floor. 

 
Fig. 1. FJSP in Flexible Packaging Manufacture(Tarigan et al., 2023) 

 In particular, genetic algorithms (a field of evolutionary optimization techniques) have 

been widely adopted for complex scheduling problems. It uses selection, crossover, and 

mutation genetic processes to emulate natural evolutionary processes by searching for the best 

solution. A search is an acceptable approach for FJSP as the problem of finding a scheduling 

solution involves a large and complex search space. 

The main aim of this thesis is to formulate a mathematical model for scheduling the FJSP 

(Flexible Job Shop Problem) by using Genetic Algorithms. This model is our attempt to put in 

place an automated queuing mechanism implemented with real data picked up from the 

manufacturing industry. Automated queuing ensures that jobs will be processed efficiently, 

taking into account priority and the product category or product length in running meters. The 

approach aims to minimize the total processing time (TP), which is referred to using makespan, 

to achieve optimal schedules and improve efficiency in manufacturing. 

Challenge: The most significant challenge of this research is to design such a scheduling 

model that could assimilate the real-time manufacturing data into scheduling models and can 

automate queue maintenance by prioritizing them on given parameters like priority level, 

product type, or runtimes. The approach uses a genetic algorithm to identify the best plan, which 

minimizes makespan of the maximum task. We are coming up with good solutions for 

navigating the complexities of FJSP. 

The goal of this query is to develop a concrete scheduling model for the Flexible Job 

Shop Problem (FJSP) that can well incorporate trusted data coming from practice in 

manufacturing. We use evolutionary algorithms to Optimize the Scheduling of Flexible Job 

Shop problems (FJSP). Utilize an extremely successful scheduling strategy for impeccable time 

management of the entire process. The best practice is to establish a rigorous testing and 

validation procedure based on real data in order to evaluate the utility of your models for 

working in practical production scenarios. 

This is an area of production scheduling and optimization that we anticipate will be 

materially affected by the research, in particular, building a new mathematical model for FJSP 

scheduling, including real data from the manufacturing industry. The research literature, to this 

end, seeks primarily to illustrate the potential of genetic algorithms in modeling complex and 

dynamic scheduling problems. The industrial space is one sector that can implement realistic 

strategies to increase efficiency and productivity. So with that, the researchers have reviewed in 
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this study how to use artificial intelligence technology for better scheduling across the Industry 

4.0 era (Ghaleb, 2020; Y. Li, 2020; S. Zhang, 2021a). 

Genetic Algorithms (GAs) have emerged as a powerful optimization tool due to their 

ability to navigate large and complex search spaces effectively. Compared to other techniques 

like tabu search or simulated annealing, GAs offer enhanced adaptability and scalability, 

making them suitable for addressing the unique challenges of FJSP. However, existing literature 

reveals gaps in real-time adaptability and integration of dynamic data in FJSP solutions. This 

study aims to bridge these gaps by developing a GASS model that incorporates real-world 

constraints and dynamic scheduling requirements. 

 

2. Literature Review 

Flexible Job Shop Scheduling (FJSP)  

The Flexible Job Shop Scheduling Problem (FJSP) is a modified version of the traditional 

job shop scheduling problem. It allows for more flexibility in choosing machines for each 

operation, making it more suitable for modern production conditions. FJSP can handle a variety 

of tasks and machines with varying capacities. (Fan et al., 2022)described FJSP as one of the 

most intricate scheduling problems due to the numerous variables and constraints involved. 

(Huang & Yang, 2019) highlighted that FJSP presents significant optimization challenges 

because of its extensive machine selection options (Lei, 2024; Tian, 2023; K. Zhu, 2023). 

 

Utilizing Genetic Algorithms for Optimizing Scheduling 

The genetic algorithm process depicted in Fig. 2 begins with the creation of an initial 

population. The chromosomes in this population represent a set of people or potential solutions. 

We assess each participant using a fitness function, based on either makespan or total 

completion time to judge the quality of the resulting solution (F. Zhang, 2022; S. Zhang, 2021b; 

X. Zhang et al., 2022). Next, we conduct a selection process to identify the most exceptional 

individuals who will act as parents in the reproductive process. Techniques like tournament 

selection achieve this by increasing the likelihood of choosing individuals with higher levels of 

fitness. Crossover, also known as recombination, is a genetic process that involves combining 

the genetic material of two parental individuals to create a new individual. The process involves 

the exchange of specific genes between the parents. On the other hand, mutation is a process 

that alters one or more genes in an individual's chromosomes. The former brings new variables 

in play which prevent the user from going directly to a local maximum known solution. After 

crossover and mutation, the newly generated individuals undergo an evaluation using a fitness 

function. Hence, the selection process for a population of tomorrow means keeping those who 

are best. This process repeats or creates new solutions until the termination criterion is satisfied 

(e.g., a maximum number of iterations, an acceptable best fitness value, and no improvement in 

fitness over fewer consecutive generations). This finally gives us the best solution to the Job 

Scheduling Problem (Tarigan et al., 2023). 
 

Fig. 2. Flow Diagram of Genetic Algorithm 
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Genetic Algorithms (GA) are commonly used evolution optimization technique in the 

area of Scheduling. A genetic algorithm (GA) applies the mechanism of natural selection to 

evolve solutions through generations, utilizing operations like, but limited to - selection, 

crossover, and mutation. (Zhuang et al., 2019) indicate that in the case of complex scheduling 

problems like FJSP, the Genetic Algorithm(GA) is an effective approach due to its ability for a 

wide exploration search space and handle multiple constraints, etc. (Singh & Sundar, 2019) 

have discussed that the GA parameters such as population size, mutation rate, and crossover rate 

play an important role in better performance of genetic algorithm to solve scheduling problems. 

 

Manufacturing systems automate queuing. 

It is a system that organizes and regulates the order in which jobs are processed, which is 

influenced by factors such as priority, product category, and the required time to produce a 

running meter of products (Abderrahim, 2020; Qin, 2021; Samsonov, 2021; Zhou, 2020). 

Automated queuing systems see to it that jobs are done efficiently and within expected 

timeframes, hence, minimizing the time client waits and maximizing production. For instance, 

their research, (Hong & Chien, 2020) found that automatic queuing integrated system into the 

production system improves production operation and reduces machine downtimes. Automated 

queuing is ideal when one is managing a dynamic production environment, facing consistent 

changes in the types of jobs to be done depending on market demands. (Rossit et al., 2019), for 

example, assert that automated queuing has been useful in dynamic environments. 

 

Authentic data from the manufacturing sector 

The validation of such scheduling models needs to use authentic data taken from the 

industry. Data includes specifics such as job type, processing time for the jobs, and level of 

cuproproteins to name a few. It is stressed by (Baykasoğlu et al., 2020) that to increase the 

accuracy and reliability of solutions in real production cases, hence realistic data-based 

scheduling models should be developed. To this end, (K. Li et al., 2021) claim that the inclusion 

of realistic data increases model realism and practical applicability as it correctly describes all 

impediments and lead times suffered in daily production. 

 

State of The Art 

Genetic algorithms and other techniques have been used by researchers, many studies 

were performed to enhance the efficiency of FJSP scheduling. Designed genetic algorithms 

integrated with real-time data for job shop scheduling (Y. Li et al., 2022; Meng, 2023; Soares, 

2020; Xie, 2023), and reported an advance in the performance of gene expression programmers 

by addressing various medical imaging problems more quickly. In (Sana et al., 2019), genetic 

algorithms are used for dynamic job shop scheduling concerning the algorithmized adaptation to 

an alteration, which enables it to change on production conditions. An improved genetic 

algorithm for optimizing the makespan in job shop scheduling was successfully applied to 

reduce the total processing time (Umam et al., 2021). 

Another study was conducted by (Zheng et al. (2022), illustrating a remarkable 

improvement in the quality of scheduling using a data-driven genetic algorithm that exploits 

real-time information from the production environment. Open access: H. Zhu et al. (2019) 

highlight that it is essential to integrate real-time data into genetic algorithm methodologies for 

the final schedule to be accurate and efficient. In their research, Luo et al. (2020) presented a 

workshop scheduling problem and solved it by using an improved genetic algorithm. The results 

indicated that their method outperformed prior works. A hybrid method that combines the 

genetic algorithm with other optimization techniques to improve production schedules has been 

proposed (Wang & Zhu, 2021). Their method exhibited promising results across all 

experimental settings. 

The paper of (Zhao & Zhang, 2021) extensively focuses on the application of artificial 

intelligence in flexible job scheduling. Their study provides insights into present trends and 

challenges within this area. The present paper provides an efficient and feasible approach for the 

manufacturing sector, the considered genetic algorithms technique serves as one of the 

advanced technology applications in scheduling too. 
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3. Research Methods 

In this work, we use a quantitative research method to develop and validate an 

algorithmic framework for solving Flexible Job-Shop Scheduling Problems (FJSP) based on 

genetic algorithms. Considering the nature of this study, we used a quantitative approach 

because it can provide accurate measurements and allow us to statistically analyze those data so 

that reliable conclusions will be capable of being drawn. 

 

Data Source 

This study used secondary data from Internal Company Records: This is a type of past 

production operations records. This information consists of how long the process takes, the 

productivity of machines, and output. Real-time information - e.g., processing times, 

downtimes, or machinery maintenance Interviews - We will conduct interviews with plant 

managers and machine operators so we can truly understand the day to day challenges that 

onsite personnel experience, in addition to what preferences they have for scheduling. Feedback 

Surveys can help collect feedback from employees on the work shift they want to perform or 

whether they are happy with it. 

The firm's information system collects data in electronic format using a data gathering 

method depicted in Fig. 3. We then merge this data into a centralized database for analysis. We 

subject the raw data to processing and verification procedures to ensure its accuracy and 

comprehensiveness before using it in simulations or scheduling models. 

 

Fig. 3. Entity-Relationship Diagram Data Source 

The provided diagram depicts the database structure of a production scheduling system, 

showcasing multiple primary tables and the links that exist between them. The MachineType 

table contains data regarding the precise type of machine utilized in the production process. The 

machine table, which provides more detailed information about each individual machine, links 

to this table. The variable MaterialWidth represents the width of the material utilized and is 

associated with ProductType, which represents the product's type, including both the material 

width and the number of colors. The routing table contains the manufacturing process's 

sequential order and is linked to machine types and orders. The Orders table stores customer 

order details, such as product, routing, and machine used. The customer entity maintains 

customer data and their priorities, which are associated with orders. ProductType is associated 

with Product, which contains precise product information. These linkages facilitate streamlined 

data integration and administration in the production scheduling system, ensuring effective 

control of all aspects of production, including machines, materials, and client orders. 
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Prior to utilization in a genetic algorithm, the data must undergo preprocessing to 

transform a non-uniform format into a standardized format (Fig. 4). This encompasses the 

process of normalizing data, imputing missing values, and converting categorical data into a 

numerical format suitable for mathematical computations. 

 

Fig. 4. Standard Format Data for FJSP Scheduling 

 

Mathematical model development 

The problem’s formulation 

Flexible job shop scheduling (FJSP) challenges arise when a manufacturing company 

needs to schedule different types of work on many machines efficiently. The primary objective 

is to decrease the makespan which refers to the overall duration needed to finish all the tasks. 

The following mathematical model provides a concise representation of the fundamental 

framework of the FJSP problem: 

 

Decision Variable: 

     :      1 if process   of job   is assigned to machine  , and        otherwise 

     : Start time of process   of job   on machine   

     : Process completion time   of job   on machine   

     : Maximum completion time for all processes   for all jobs   

     
 :        1 if job    processed after job   on machine  , and        0 otherwise 

   : Due date of job   

 

Objective Function: 

         : Minimum Makespan (Find the most optimal completion time for all 

work) 

      =                     

Constraints: 

∑            
     

       
 

where every process of every job must be processed exactly once on the appropriate machine. 

∑∑             

      

 

where each machine can only process one job for a particular process until it is finished. 

                                       

where process completion time   of job   on machine  . 

                          

where process completion time   of job   on machine   smaller equals to maximum 

completion time for all processes   for all jobs  . 

(1) 

(2) 

(3) 

(4) 
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     {   }                 

where decision variable     
 is binary numbers. 

      {
                                

                          

 

where actual setup time is reduced when working on the same job type as the previous job on 

the same machine. 

 (    )                                       

where start time takes into account setup time. 

                        

where work completed before the due date. 

 (   )                                                   

where each process in one job must complete before the next process can start. 

∑                                    

   

 

where all previously completed processes are not reassigned to any machine. 

 

Job Definition with Dynamic Characteristics 

This study classifies occupations as dynamic by considering three primary factors: 

product type, running meter, and priority. The term "product type" describes the classification of 

the item under manufacture, which includes a variety of items with unique characteristics and 

production needs. Running Meter: This is a quantity of measurement that calculates how much 

material is required to manufacture one product. It has a significant contribution to production 

planning and scheduling. Priority: When you define the list of things to do and their hierarchy 

based on either market demand or production needs. By combining these 3 factors the system 

can monitor and manage tasks on a case-by-case basis allowing for more efficient production 

that can be adjusted according to changes in demand, work schedules, deadlines, etc. 

 

Genetic Algorithm Implementation 

Execution A genetic algorithm execution contains three initial population individuals or 

potential solutions, commonly referred to as chromosomes, is a members of an initial went on 

calmly enacted by its slime balls. The fitness function evaluates each generation to assess the 

final solution quality, usually in terms of makespan or total completion time for production 

scheduling. 

Techniques such as roulette wheel selection select the most exceptional individuals as 

parents, giving those with superior fitness a higher probability of selection. The crossover, or 

recombination, process involves merging two parent individuals to generate new individuals 

through the exchange of their genes. Mutation follows, altering one or more genes in the 

individual chromosomes to introduce fresh variation and prevent premature convergence to a 

local solution. After the crossover and mutation process, a fitness function reevaluates the newly 

created individuals. Then, we carry out a new generation selection to determine the population 

of the next generation, retaining only the best individuals. We continue this iterative process for 

multiple generations until we meet a specific termination condition, such as a predetermined 

number of generations or a lack of substantial improvement in fitness values. The final objective 

is to discover the most optimal solution to an intricate scheduling problem. 

 

Individual Representation 

Each entity within the genetic algorithm corresponds to a single prospective resolution for 

the scheduling predicament. Chromosomes, which contain data regarding job sequences and 

machine assignments, represent these individuals. Here is the proposed pseudocode that 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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describes the procedure for creating individuals using the FJSP model. 

 

Pseudocode to create individual: 

1 

2 

3 

4 

 

5 

 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

 

22 

23 

24 

25 

 

26 

 

27 

28 

 

29 

30 

31 

32 

33 

34 

35 

36 

 

37 

38 

39 

40 

41 

42 

43 

: 

: 

: 

: 

 

: 

 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

 

: 

: 

: 

: 

 

: 

 

: 

: 

 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

FUNCTION create_individual 

    INITIALIZE machine_end_times TO dictionary with all machines set to 0 

    INITIALIZE job_end_times TO dictionary with all jobs set to 0 

    INITIALIZE last_job_type_on_machine TO dictionary with all machines set to  

                          None 

    INITIALIZE job_process_allocation TO dictionary of dictionaries for each job and  

                          its processes set to None 

     

    SHUFFLE job_list 

 

    FOR EACH job IN job_list 

        FOR EACH proc_index, proc IN enumerate(processes[job]) 

            INITIALIZE best_end_time TO infinity 

            INITIALIZE best_machine TO None 

            INITIALIZE best_start_time TO None 

            INITIALIZE best_process_time TO None 

            INITIALIZE best_setup_time TO None 

 

            FOR EACH machine IN available_machines[(job, proc)] 

                SET current_job_type TO job_types[job] 

                 

                IF last_job_type_on_machine[machine] EQUALS current_job_type 

                    SET setup_time_current TO setup_time[(machine, current_job_type)] *     

                            alpha 

                ELSE 

                    SET setup_time_current TO setup_time[(machine, current_job_type)] 

                 

                CALCULATE process_time_adjusted AS processing_time[(job, proc)] *  

                                        machine_speed[machine] 

                CALCULATE start_time AS MAX of machine_end_times[machine] and  

                                        job_end_times[job] 

 

                CALCULATE end_time AS start_time + process_time_adjusted +  

                                        setup_time_current 

                IF end_time < best_end_time 

                    UPDATE best_end_time TO end_time 

                    UPDATE best_machine TO machine 

                    UPDATE best_start_time TO start_time 

                    UPDATE best_process_time TO process_time_adjusted 

                    UPDATE best_setup_time TO setup_time_current 

 

            APPEND (job, proc, best_machine, best_start_time, best_process_time,  

                              best_setup_time) TO ind 

            UPDATE machine_end_times[best_machine] TO best_end_time 

            UPDATE job_end_times[job] TO best_end_time 

            UPDATE last_job_type_on_machine[best_machine] TO job_types[job] 

            UPDATE job_process_allocation[job][proc] TO best_machine 

 

    RETURN creator.Individual(ind) 

END FUNCTION 

 

Fitness Evaluation 
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We use the fitness function to evaluate each person's excellence based on the resulting 

make-up. Individuals with a shorter makespan are believed to have higher fitness. The 

implementation uses pseudocode, as depicted below. 

 

Pseudocode to evaluate the individual: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

Function evaluate(individual) 

    Initialize: 

        job_process_done as dictionary of jobs with lists of boolean (false) 

        job_end_times as dictionary with job keys and zero values 

        machine_end_times as dictionary with machine keys and zero values 

        penalties set to 0 

 

    For each gene in individual 

        Extract job, proc, machine, start_time, process_time, setup_time from gene 

        proc_index = index of proc in job's process list 

 

        Check if process already done or out of sequence: 

            If yes, add 1000 to penalties 

 

        If machine is None: 

            Add 10000 to penalties 

            Continue to next gene 

 

        Calculate actual start time: 

            actual_start = maximum of machine_end_times[machine] and  

                                   job_end_times[job] + setup_time 

            end_time = actual_start + process_time 

 

        If due date of current job equals the minimum of all due dates: 

            Find jobs with the same due date 

            Select job with lowest priority value from these jobs 

            If current job is not the selected job: 

                Continue to next iteration 

 

        Manage job and machine timings: 

            If actual_start < machine_end_times[machine]: 

                Add 1000 to penalties 

            Else: 

                Update machine_end_times[machine] to end_time 

 

        Update job end times: 

            job_end_times[job] = end_time 

 

        Mark process as done: 

            Set job_process_done[job][proc_index] to true 

 

        Check for due date violations: 

            If job_end_times[job] > due_dates[job]: 

                Calculate delay = job_end_times[job] - due_dates[job] 

                Add delay * late_penalty_factor to penalties 

 

    Compute total fitness: 

        max_end_time = find maximum value in job_end_times 

        total_fitness = max_end_time + penalties 
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50 

51 

 

: 

: 

 

    Return total_fitness 

End Function 

Genetic Operations 

The execution phases of a genetic algorithm consist of three primary stages: selection, 

crossover, and mutation. The selection process uses a tournament selection method to determine 

the reproductive capability of individuals based on their fitness value. During the crossover 

stage, the crossover operator chooses two individuals as parents and merges them to generate 

new progeny. The mutation stage occurs when people experience genetic mutations, which 

include altering small parts of their chromosomes and bringing new variants into the population. 

 

Algorithm Parameters 

The genetic algorithm is executed with the following parameters: population size, which 

represents the total count of individuals in a population; crossover probability, which denotes 

the likelihood of selecting two individuals for the crossover process; mutation probability, 

which indicates the likelihood of an individual undergoing a genetic mutation; and the number 

of generations, which signifies the total number of iterations performed by the algorithm. 

 

Model Validation and Verification 

Authentic data from the industrial industry serves as the validation for the model. We 

executed multiple test scenarios to assess the model's performance across different production 

settings. We compare the findings of the genetic algorithm with those of classical scheduling 

algorithms to assess its superiority in minimizing makespan. 

We conducted experimentation using the parameters and data specified in Table 1. 
Table 1 - Parameters of Genetic Algorithm 

Parameter Value 

Population Size 100 

Iteration Cycles 50 

Crossover Rate 0.5 

Crossover Two Point Crossover 

Mutation Rate 0.2 

We conduct an experiment using real data and specified parameters to verify the 

successful execution of the genetic algorithm, which includes the individual creation function 

and fitness evaluation function tailored to the FJSP mathematical model. The experiment 

utilizes data that conforms to the format depicted in Fig. 4 above. 

Executing the genetic algorithm model with the parameters listed in Table 1 yields the 

results shown in Table 2 below: 
Table 2 - Output Genetic Algorithm Processing 

Generation Evaluations Min Max Avg Std 

0 100 19437,6 403924,39 124022,435 119737,604 

1 71 19437,6 16781833,3 457124,287 1746894,45 

2 72 19437,6 8902560,03 559018,4 1560520,09 

3 64 19437,6 4821242,06 178435,374 599782,226 

4 62 19437,6 10785124,6 228200,947 1102360,05 

5 55 19437,6 6280934,81 277160,279 1007041,46 

6 59 19437,6 6759818,39 209885,271 793325,421 

7 72 19437,6 7297970,96 432877,257 1324457,04 

8 49 19437,6 3671933,85 106150,453 374423,028 

9 65 19437,6 1491297,77 91870,0958 201631,431 

10 64 19437,6 4108470,42 117675,655 429386,364 

11 55 19437,6 792138,24 69627,981 135709,056 

12 54 19437,6 4762791,7 107960,393 490773,183 
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13 53 19437,6 789138,24 44958,3339 107861,82 

14 58 19437,6 3200881,77 75981,9919 359201,668 

15 54 19437,6 1773886 90011,0427 277372,581 

16 65 19437,6 504981,746 36281,7654 63415,7611 

17 60 19437,6 1991480,79 57484,2642 206436,592 

18 57 19437,6 434502,028 32314,63 57911,751 

19 56 19437,6 1097112,06 37206,7141 117043,817 

20 63 19437,6 997610,046 39334,4485 114680,941 

21 48 19437,6 714664,569 29662,0678 70173,043 

22 61 19437,6 2583451,78 51230,3994 255970,937 

23 54 19437,6 2333563,52 74713,094 275503,494 

24 57 19437,6 630696,934 35100,9773 72482,4448 

25 52 19437,6 1841130,48 49721,6673 207417,777 

26 61 19437,6 405827,593 28828,1265 46524,5268 

27 56 19437,6 2597247,5 87815,8148 320329,138 

28 59 19437,6 1847543,01 53817,2176 203993,441 

29 48 19437,6 1173889,99 39816,6459 122979,469 

30 63 19437,6 2154731,48 53816,8303 220529,887 

31 72 19437,6 1620819,64 43411,0812 169051,725 

32 60 19437,6 3158325,4 122629,185 476905,137 

33 61 19437,6 515750,378 26813,2249 49372,1196 

34 55 19437,6 1689160,35 54977,9955 203349,922 

35 57 19437,6 2261273,75 56956,7813 241489,41 

36 48 19437,6 5446138,41 89076,9857 546259,038 

37 55 19437,6 262361,544 26852,0144 34772,7626 

38 62 19437,6 1151732,63 43009,2897 123874,808 

39 49 19437,6 1224703,61 55867,9959 165951,322 

40 47 19437,6 2229909,45 61490,2475 241300,353 

41 57 19437,6 1384854,33 37479,5284 139011,81 

42 64 19437,6 1232839,93 54346,6454 158726,525 

43 65 19437,6 1597624,2 61960,7218 214574,825 

44 51 19437,6 1252527,84 58964,0339 200669,681 

45 56 19437,6 2647005,9 69176,9255 295462,49 

46 70 19437,6 244130,857 24886,4946 24049,265 

47 57 19437,6 1337193,73 55828,0065 189262,955 

48 60 19437,6 1477005,83 44464,4103 152787,525 

49 53 19437,6 786102,844 36261,2875 103377,165 

50 70 19437,6 1352691,44 52086,5605 187421,39 

 

Analysis of the Results 
The experiment yielded results that demonstrate the capabilities of the constructed model 

when using the genetic algorithm refer to Table 2 above, as shown in Fig. 5 below. The diagram 

illustrates the fitness statistics throughout multiple generations of the genetic algorithm. The 

graph illustrates three fundamental metrics: the minimal fitness, the average fitness, and the 

standard deviation of fitness for each generation. The red line represents the minimal fitness 
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value, which has a tendency to fall and thereafter stabilize as generations advance, suggesting 

the algorithm's ability to discover superior solutions. The blue line depicts the mean fitness, 

which exhibits a declining and stabilizing pattern, indicating an enhancement in the overall 

quality of solutions within the population. The grey region represents the standard deviation of 

fitness, which indicates the degree of variety in the population. This variation tends to diminish 

as time progresses, suggesting that the algorithm is moving towards the ideal solution. In 

general, the graph demonstrates that the genetic algorithm is effectively optimizing the answer, 

achieving convergence within a specific number of generations. 
 

Fig. 5. Fitness Statistic Over Generations 

 

4. Results and Discussions  

The extraction stage is the initial phase, where we collect and validate data from multiple 

sources to ensure precision. Subsequently, in the transform phase, the acquired data undergoes 

processing and organization, ensuring its readiness for utilization. After conversion, the load 

phase sends the processed data to the repository. During the execution stage, the system applies 

the genetic algorithm to the data repository to identify the most optimal solution. e system 

presents the optimal schedule derived from the optimization process. In these stages, the study 

ensures a systematic execution of each step, from extraction to algorithm execution, to achieve 

the best possible scheduling results. 
Table 3 - Data Processing for Flexible Packaging Manufacture 

Job Type 
Running 

Meter 
Colour Process Code Min Speed 

Ratio 

Speed 

Setup 

Time 

J57 22 162223 9 P1 M3 200 0,5 150 

J57 22 162223 9 P2 M4 200 1 90 

J57 22 162223 9 P2 M5 200 0,75 90 

J57 22 162223 9 P2 M6 200 0,5 90 

J57 22 162223 9 P2 M7 200 1 90 

J57 22 162223 9 P3 M8 200 1 90 

J57 22 162223 9 P4 M9 80 1 60 

J57 22 162223 9 P4 M10 80 0,75 60 

J57 22 162223 9 P4 M11 80 0,75 60 

J57 22 162223 9 P4 M12 80 0,5 60 



Tarigan et al …                                     Vol 6(2) 2025: 1280-1296 

1292 

 

J57 22 162223 9 P4 M13 80 0,125 60 

J57 22 162223 9 P4 M14 80 1 90 

J57 22 162223 9 P5 M15 80 0,75 90 

Table 3 displays the outcomes of data processing for a production task involving product 

type J57. This particular product has a production length of 162223 meters and utilizes a total of 

9 distinct colors. The provided data contains comprehensive information for each production 

process, including a Process List with the sequence number (No), the name and code of the 

machine used, the number of colors processed at each stage, the minimum machine speed 

(MinSpeed), the machine speed ratio (Ratio Speed), and the machine setup time (Setup Time). 

This means during the first procedure we will print at a B1 printing machine (M3) with a 

minimum velocity of 200, velocity ratio of.5, and setup duration =150 if, for example, you 

would like to produce tickets. Its existence allows us to schedule merged production schedules - 

and plan accordingly how each operation would be executed at full efficiency, about the 

machine capacity that is available for use. This access provides more accurate scheduling and 

lets you pull insights on areas that can be improved operationally. 

 

Results 

We conducted a series of experiments using a Genetic Adaptive Scheduling System 

(GASS) model to improve the production scheduling process before creating a Gantt chart to 

display the most efficient scheduling. The goal of this experiment is to reduce the longest job 

duration and optimize task distribution among the available computers. We anticipate that the 

GA model, by leveraging authentic industry data and powerful hardware, will deliver a 

scheduling solution that not only minimizes machine idle time but also enhances overall 

productivity. We will display the outcomes of this model through a Gantt chart, which will 

illustrate the order and duration of each task on the respective machines. This will provide a 

clear and comprehensive depiction of the optimal scheduling that emerges. 
 

Fig. 6. Gantt Chart Output by Genetic Algorithm Model 

Fig. 6 Gantt Chart Output by Genetic Algorithm Model. The Order and Machine 

Efficiency Information is the most capable plan of production for order work to machines Task-

wise. Every colored block on this plot is a unique task that some machine needs to do within its 

allotted time. Taking into account variables such as product type, linear meters to run, work 

importance, and machine capacity the model determines a schedule in an automated manner. 

The outcomes show that the proposed model is capable of assigning jobs to machines 

accurately, solving allocation problems without idle state, and zero downtime in order to satisfy 

continuous goods stream. As a result, industries are now in perfect condition to go with the 

schedule made for them and improve both operational efficiency as well as effectiveness while 
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meeting their specific dynamic production requirements. This automation plan allows 

enterprises to address market demands quickly, utilize resources efficiently, and enhance 

production. 

We conducted the Genetic Adaptive Scheduling System (GASS) model experiment on an 

Apple M2 Pro laptop with 16GB of memory. Table 4 below displays the results of this 

experiment. This hardware guarantees efficient and rapid execution of the scheduling process 

and makespan computation by harnessing the laptop's high processing power and extensive 

memory capacity. The experimental results demonstrate the superiority of the Genetic Adaptive 

Scheduling System (GASS) approach in generating a more efficient schedule when compared to 

traditional approaches, in terms of both scheduling time and overall work completion time 

(makespan). 
Table 4 - Comparison of Conventional Method vs GASS Method 

Job Qty 
Conventional Method GASS Method 

Time Makespan Time Makespan 

10 50 15,19 0,49 5,4 

15 75 22,785 0,49 8,1 

20 100 30,38 0,49 10,8 

25 125 37,975 0,49 13,5 

30 150 45,57 0,49 16,2 

35 175 53,165 0,49 18,9 

40 200 60,76 0,49 21,6 

45 225 68,355 0,49 24,3 

50 250 75,95 0,49 27 

In Table 4 shown above, performances of traditional scheduling methods were compared 

with GASS-based techniques for different job quantities. In both timetabling, the "Time" 

column shows the time taken to generate a schedule, and one side of "Makespan' row 

demonstrates the total used for execution (makespan) by each method. 

This table also shows that the scheduling time is frequently reduced (to 0.49 unit-time) in 

the GA technique compared to the conventional method. The larger the number of jobs (from 50 

to more than say around 250 units a year) this advantage becomes even more pronounced. In 

addition, the GASS model results with far better makespan than a typical approach. As an 

example, the results of 10 jobs should be a makespan of respectively 5.4 (GASS methodology) 

and a lengthened to approximately three times as long if using traditional methods ending in 

about 15.19 As the number of jobs increases, this trend is confirmed as again (always) GASS 

results in lower makespans. For example, for 50 jobs the makespan is equal to 27 when obtained 

by the GASS method and the conventional approach yields a value of makespan as high as 

75.95. 

 

5. Conclusion  

This study presents a comprehensive dataset designed to support research and 

development in Flexible Job Shop Scheduling Problems (FJSS), particularly for dynamic 

production environments. The dataset incorporates critical real-world factors such as machine 

flexibility, varying processing times, job priorities, setup times, and machine downtimes, 

offering a robust foundation for advanced optimization techniques. 

The dataset is specifically tailored for the implementation and evaluation of the Genetic 

Adaptive Scheduling System (GASS), a modified genetic algorithm framework. By integrating 

enhanced mutation and selection processes, GASS provides significant improvements in 

scheduling efficiency, achieving up to a 45.3% reduction in makespan within the flexible 

packaging industry. This performance underscores its potential as a scalable and adaptable 

solution for dynamic scheduling challenges. 

The inclusion of real-world constraints ensures the dataset's applicability across various 

industries, including printing, electronics, and pharmaceuticals. Researchers can leverage this 
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dataset to explore new methods for addressing complex scheduling problems, including multi-

objective optimization, dynamic adaptability, and real-time decision-making. 

Future work should focus on expanding the dataset to include additional dynamic factors, 

such as variable demand patterns and energy constraints, and testing its applicability in different 

industrial scenarios. Moreover, integrating the dataset with machine learning models could 

provide further insights into predictive and adaptive scheduling strategies. 
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