
 Journal of Applied Engineering and Technological Science
 Vol 6(2) 2025: 1280-1296

1280

FLEXIBLE JOB SHOP SCHEDULING OPTIMIZATION USING GENETIC

ALGORITHM FOR HANDLING DYNAMIC FACTORS

Masmur Tarigan1*, Ford Lumban Gaol2, Alexander AS Gunawan3, Widodo Budiharto4

Computer Science Department, Esa Unggul University, Jakarta, Indonesia1

Department of Doctor of Computer Science, BINUS - Graduate Program, Bina Nusantara

University, Jakarta, Indonesia2

Computer Science Department, School of Computer Science, Bina Nusantara University,

Jakarta, Indonesia34

masmur.tarigan@esaunggul.ac.id

Received: 30 July 2024, Revised: 24 February 2025, Accepted: 18 March 2025

*Corresponding Author

ABSTRACT

This research introduces the Genetic Adaptive Scheduling System (GASS), a novel framework designed to

optimize scheduling in Flexible Job Shop Scheduling Problems (FJSP). Due to its complexity, FJSP

presents significant challenges stemming from machine flexibility, dynamic routing, and operation

precedence constraints. GASS addresses these challenges by incorporating real-time, dynamic data,

enabling the system to adapt to machine downtimes, fluctuating job priorities, and process variability.

Leveraging advanced genetic algorithm techniques, GASS integrates enhanced mutation and selection

processes that dynamically adjust setup times, prioritize urgent tasks, and balance machine workloads to

minimize makespan effectively. Empirical results demonstrate that GASS achieves up to a 45.3%

reduction in makespan within the flexible packaging industry, showcasing its ability to enhance

scheduling efficiency and adaptability. The research highlights the system’s scalability and potential

applicability across diverse industries, including printing, electronics, pharmaceuticals, and food

manufacturing, where operational flexibility and efficiency are critical. By bridging existing gaps and

integrating real-time constraints into scheduling models, GASS provides practical solutions for modern

manufacturing environments. The findings contribute to the advancement of optimization techniques in

FJSP, offering valuable insights for researchers and practitioners seeking efficient, scalable, and

adaptive scheduling systems.

Keywords: Flexible Job Shop Scheduling, Genetic Adaptive Scheduling System, Dynamic Scheduling

Optimization, Manufacturing Process Efficiency, Real-Time Production Scheduling.

1. Introduction

Due to its relevance to efficient resource and production time allocation, Flexible Job

Shop Scheduling (FJSS) has come to the forefront of many modern manufacturing research

efforts. The FJSS problem belongs to optimization problems and is an NP-hard problem that

becomes more complex due to the consideration of dynamic factors in real production

environments (Psarommatis, 2020; Shao, 2021; Türkyılmaz, 2020; F. Zhang, 2021, 2023;

Zhuang et al., 2019). As a powerful metaheuristic approach, genetic algorithms (GA) have been

successfully used to address this issue. The VSH developed a mathematical model for FJSS,

whose objective function is the maximization of total profit, which accounts for the cost of raw

material and selling price, as well as the changing demand throughout each period. This

methodology effectively identifies the economical production quantity on different machines

to fulfill customer demand at each period (Awad, 2021; Luo, 2020; Xu, 2020).

Moreover, a comprehensive scheduling model would incorporate dynamic factors—most

importantly, setup times, job priorities, and machine downtimes that can change throughout an

operation. Consequently, the scheduling system has the flexibility to accommodate fluctuating

production conditions in real time, resulting in enhanced operational efficiency (Y. Li et al.,

2022). In this context, GA-based approaches have demonstrated superior schedule quality,

taking into account the actual dynamics of the production environment.

The application of GA for FJSS scheduling taking dynamic factors into account has been

investigated in few industrial case studies under the heading of practical implementation. It has

been shown that it enhances the efficiency of production and makes it easier to adapt to

mailto:masmur.tarigan@esaunggul.ac.id

Tarigan et al … Vol 6(2) 2025: 1280-1296

1281

changes in demand and operating conditions. Hence, the use of GA in FJSS scheduling is a

useful approach to solve complex problems in dynamic manufacturing environment.

There is a great variety of problems, ranging from simple to very complex ones but the

Flexible Job Shop Problem (FJSP) in particular - or more general solutions named General

manufacturing scheduling problem GSTP. FJSP entails more complex task scheduling because

of the necessity for processing different products using various machines and with distinct

operating sequences. Efficient scheduling is also very important to make the most of your

resources and minimize lead times and production overall. Fig. In this example given in Fig. 1,

the FJSP scheduling problem is a real-world challenge of a flexible packaging manufacturing

environment where each job presents an intricate structure and demands several operations to be

conducted by undistinguishable machines available at the production shop floor.

Fig. 1. FJSP in Flexible Packaging Manufacture(Tarigan et al., 2023)

 In particular, genetic algorithms (a field of evolutionary optimization techniques) have

been widely adopted for complex scheduling problems. It uses selection, crossover, and

mutation genetic processes to emulate natural evolutionary processes by searching for the best

solution. A search is an acceptable approach for FJSP as the problem of finding a scheduling

solution involves a large and complex search space.

The main aim of this thesis is to formulate a mathematical model for scheduling the FJSP

(Flexible Job Shop Problem) by using Genetic Algorithms. This model is our attempt to put in

place an automated queuing mechanism implemented with real data picked up from the

manufacturing industry. Automated queuing ensures that jobs will be processed efficiently,

taking into account priority and the product category or product length in running meters. The

approach aims to minimize the total processing time (TP), which is referred to using makespan,

to achieve optimal schedules and improve efficiency in manufacturing.

Challenge: The most significant challenge of this research is to design such a scheduling

model that could assimilate the real-time manufacturing data into scheduling models and can

automate queue maintenance by prioritizing them on given parameters like priority level,

product type, or runtimes. The approach uses a genetic algorithm to identify the best plan, which

minimizes makespan of the maximum task. We are coming up with good solutions for

navigating the complexities of FJSP.

The goal of this query is to develop a concrete scheduling model for the Flexible Job

Shop Problem (FJSP) that can well incorporate trusted data coming from practice in

manufacturing. We use evolutionary algorithms to Optimize the Scheduling of Flexible Job

Shop problems (FJSP). Utilize an extremely successful scheduling strategy for impeccable time

management of the entire process. The best practice is to establish a rigorous testing and

validation procedure based on real data in order to evaluate the utility of your models for

working in practical production scenarios.

This is an area of production scheduling and optimization that we anticipate will be

materially affected by the research, in particular, building a new mathematical model for FJSP

scheduling, including real data from the manufacturing industry. The research literature, to this

end, seeks primarily to illustrate the potential of genetic algorithms in modeling complex and

dynamic scheduling problems. The industrial space is one sector that can implement realistic

strategies to increase efficiency and productivity. So with that, the researchers have reviewed in

Tarigan et al … Vol 6(2) 2025: 1280-1296

1282

this study how to use artificial intelligence technology for better scheduling across the Industry

4.0 era (Ghaleb, 2020; Y. Li, 2020; S. Zhang, 2021a).

Genetic Algorithms (GAs) have emerged as a powerful optimization tool due to their

ability to navigate large and complex search spaces effectively. Compared to other techniques

like tabu search or simulated annealing, GAs offer enhanced adaptability and scalability,

making them suitable for addressing the unique challenges of FJSP. However, existing literature

reveals gaps in real-time adaptability and integration of dynamic data in FJSP solutions. This

study aims to bridge these gaps by developing a GASS model that incorporates real-world

constraints and dynamic scheduling requirements.

2. Literature Review

Flexible Job Shop Scheduling (FJSP)

The Flexible Job Shop Scheduling Problem (FJSP) is a modified version of the traditional

job shop scheduling problem. It allows for more flexibility in choosing machines for each

operation, making it more suitable for modern production conditions. FJSP can handle a variety

of tasks and machines with varying capacities. (Fan et al., 2022)described FJSP as one of the

most intricate scheduling problems due to the numerous variables and constraints involved.

(Huang & Yang, 2019) highlighted that FJSP presents significant optimization challenges

because of its extensive machine selection options (Lei, 2024; Tian, 2023; K. Zhu, 2023).

Utilizing Genetic Algorithms for Optimizing Scheduling

The genetic algorithm process depicted in Fig. 2 begins with the creation of an initial

population. The chromosomes in this population represent a set of people or potential solutions.

We assess each participant using a fitness function, based on either makespan or total

completion time to judge the quality of the resulting solution (F. Zhang, 2022; S. Zhang, 2021b;

X. Zhang et al., 2022). Next, we conduct a selection process to identify the most exceptional

individuals who will act as parents in the reproductive process. Techniques like tournament

selection achieve this by increasing the likelihood of choosing individuals with higher levels of

fitness. Crossover, also known as recombination, is a genetic process that involves combining

the genetic material of two parental individuals to create a new individual. The process involves

the exchange of specific genes between the parents. On the other hand, mutation is a process

that alters one or more genes in an individual's chromosomes. The former brings new variables

in play which prevent the user from going directly to a local maximum known solution. After

crossover and mutation, the newly generated individuals undergo an evaluation using a fitness

function. Hence, the selection process for a population of tomorrow means keeping those who

are best. This process repeats or creates new solutions until the termination criterion is satisfied

(e.g., a maximum number of iterations, an acceptable best fitness value, and no improvement in

fitness over fewer consecutive generations). This finally gives us the best solution to the Job

Scheduling Problem (Tarigan et al., 2023).

Fig. 2. Flow Diagram of Genetic Algorithm

Tarigan et al … Vol 6(2) 2025: 1280-1296

1283

Genetic Algorithms (GA) are commonly used evolution optimization technique in the

area of Scheduling. A genetic algorithm (GA) applies the mechanism of natural selection to

evolve solutions through generations, utilizing operations like, but limited to - selection,

crossover, and mutation. (Zhuang et al., 2019) indicate that in the case of complex scheduling

problems like FJSP, the Genetic Algorithm(GA) is an effective approach due to its ability for a

wide exploration search space and handle multiple constraints, etc. (Singh & Sundar, 2019)

have discussed that the GA parameters such as population size, mutation rate, and crossover rate

play an important role in better performance of genetic algorithm to solve scheduling problems.

Manufacturing systems automate queuing.

It is a system that organizes and regulates the order in which jobs are processed, which is

influenced by factors such as priority, product category, and the required time to produce a

running meter of products (Abderrahim, 2020; Qin, 2021; Samsonov, 2021; Zhou, 2020).

Automated queuing systems see to it that jobs are done efficiently and within expected

timeframes, hence, minimizing the time client waits and maximizing production. For instance,

their research, (Hong & Chien, 2020) found that automatic queuing integrated system into the

production system improves production operation and reduces machine downtimes. Automated

queuing is ideal when one is managing a dynamic production environment, facing consistent

changes in the types of jobs to be done depending on market demands. (Rossit et al., 2019), for

example, assert that automated queuing has been useful in dynamic environments.

Authentic data from the manufacturing sector

The validation of such scheduling models needs to use authentic data taken from the

industry. Data includes specifics such as job type, processing time for the jobs, and level of

cuproproteins to name a few. It is stressed by (Baykasoğlu et al., 2020) that to increase the

accuracy and reliability of solutions in real production cases, hence realistic data-based

scheduling models should be developed. To this end, (K. Li et al., 2021) claim that the inclusion

of realistic data increases model realism and practical applicability as it correctly describes all

impediments and lead times suffered in daily production.

State of The Art

Genetic algorithms and other techniques have been used by researchers, many studies

were performed to enhance the efficiency of FJSP scheduling. Designed genetic algorithms

integrated with real-time data for job shop scheduling (Y. Li et al., 2022; Meng, 2023; Soares,

2020; Xie, 2023), and reported an advance in the performance of gene expression programmers

by addressing various medical imaging problems more quickly. In (Sana et al., 2019), genetic

algorithms are used for dynamic job shop scheduling concerning the algorithmized adaptation to

an alteration, which enables it to change on production conditions. An improved genetic

algorithm for optimizing the makespan in job shop scheduling was successfully applied to

reduce the total processing time (Umam et al., 2021).

Another study was conducted by (Zheng et al. (2022), illustrating a remarkable

improvement in the quality of scheduling using a data-driven genetic algorithm that exploits

real-time information from the production environment. Open access: H. Zhu et al. (2019)

highlight that it is essential to integrate real-time data into genetic algorithm methodologies for

the final schedule to be accurate and efficient. In their research, Luo et al. (2020) presented a

workshop scheduling problem and solved it by using an improved genetic algorithm. The results

indicated that their method outperformed prior works. A hybrid method that combines the

genetic algorithm with other optimization techniques to improve production schedules has been

proposed (Wang & Zhu, 2021). Their method exhibited promising results across all

experimental settings.

The paper of (Zhao & Zhang, 2021) extensively focuses on the application of artificial

intelligence in flexible job scheduling. Their study provides insights into present trends and

challenges within this area. The present paper provides an efficient and feasible approach for the

manufacturing sector, the considered genetic algorithms technique serves as one of the

advanced technology applications in scheduling too.

Tarigan et al … Vol 6(2) 2025: 1280-1296

1284

3. Research Methods

In this work, we use a quantitative research method to develop and validate an

algorithmic framework for solving Flexible Job-Shop Scheduling Problems (FJSP) based on

genetic algorithms. Considering the nature of this study, we used a quantitative approach

because it can provide accurate measurements and allow us to statistically analyze those data so

that reliable conclusions will be capable of being drawn.

Data Source

This study used secondary data from Internal Company Records: This is a type of past

production operations records. This information consists of how long the process takes, the

productivity of machines, and output. Real-time information - e.g., processing times,

downtimes, or machinery maintenance Interviews - We will conduct interviews with plant

managers and machine operators so we can truly understand the day to day challenges that

onsite personnel experience, in addition to what preferences they have for scheduling. Feedback

Surveys can help collect feedback from employees on the work shift they want to perform or

whether they are happy with it.

The firm's information system collects data in electronic format using a data gathering

method depicted in Fig. 3. We then merge this data into a centralized database for analysis. We

subject the raw data to processing and verification procedures to ensure its accuracy and

comprehensiveness before using it in simulations or scheduling models.

Fig. 3. Entity-Relationship Diagram Data Source

The provided diagram depicts the database structure of a production scheduling system,

showcasing multiple primary tables and the links that exist between them. The MachineType

table contains data regarding the precise type of machine utilized in the production process. The

machine table, which provides more detailed information about each individual machine, links

to this table. The variable MaterialWidth represents the width of the material utilized and is

associated with ProductType, which represents the product's type, including both the material

width and the number of colors. The routing table contains the manufacturing process's

sequential order and is linked to machine types and orders. The Orders table stores customer

order details, such as product, routing, and machine used. The customer entity maintains

customer data and their priorities, which are associated with orders. ProductType is associated

with Product, which contains precise product information. These linkages facilitate streamlined

data integration and administration in the production scheduling system, ensuring effective

control of all aspects of production, including machines, materials, and client orders.

Tarigan et al … Vol 6(2) 2025: 1280-1296

1285

Prior to utilization in a genetic algorithm, the data must undergo preprocessing to

transform a non-uniform format into a standardized format (Fig. 4). This encompasses the

process of normalizing data, imputing missing values, and converting categorical data into a

numerical format suitable for mathematical computations.

Fig. 4. Standard Format Data for FJSP Scheduling

Mathematical model development

The problem’s formulation

Flexible job shop scheduling (FJSP) challenges arise when a manufacturing company

needs to schedule different types of work on many machines efficiently. The primary objective

is to decrease the makespan which refers to the overall duration needed to finish all the tasks.

The following mathematical model provides a concise representation of the fundamental

framework of the FJSP problem:

Decision Variable:

 : 1 if process of job is assigned to machine , and otherwise

 : Start time of process of job on machine

 : Process completion time of job on machine

 : Maximum completion time for all processes for all jobs

 : 1 if job processed after job on machine , and 0 otherwise

 : Due date of job

Objective Function:

 : Minimum Makespan (Find the most optimal completion time for all

work)

 =

Constraints:

∑

where every process of every job must be processed exactly once on the appropriate machine.

∑∑

where each machine can only process one job for a particular process until it is finished.

where process completion time of job on machine .

where process completion time of job on machine smaller equals to maximum

completion time for all processes for all jobs .

(1)

(2)

(3)

(4)

Tarigan et al … Vol 6(2) 2025: 1280-1296

1286

 { }

where decision variable
 is binary numbers.

 {

where actual setup time is reduced when working on the same job type as the previous job on

the same machine.

 ()

where start time takes into account setup time.

where work completed before the due date.

 ()

where each process in one job must complete before the next process can start.

∑

where all previously completed processes are not reassigned to any machine.

Job Definition with Dynamic Characteristics

This study classifies occupations as dynamic by considering three primary factors:

product type, running meter, and priority. The term "product type" describes the classification of

the item under manufacture, which includes a variety of items with unique characteristics and

production needs. Running Meter: This is a quantity of measurement that calculates how much

material is required to manufacture one product. It has a significant contribution to production

planning and scheduling. Priority: When you define the list of things to do and their hierarchy

based on either market demand or production needs. By combining these 3 factors the system

can monitor and manage tasks on a case-by-case basis allowing for more efficient production

that can be adjusted according to changes in demand, work schedules, deadlines, etc.

Genetic Algorithm Implementation

Execution A genetic algorithm execution contains three initial population individuals or

potential solutions, commonly referred to as chromosomes, is a members of an initial went on

calmly enacted by its slime balls. The fitness function evaluates each generation to assess the

final solution quality, usually in terms of makespan or total completion time for production

scheduling.

Techniques such as roulette wheel selection select the most exceptional individuals as

parents, giving those with superior fitness a higher probability of selection. The crossover, or

recombination, process involves merging two parent individuals to generate new individuals

through the exchange of their genes. Mutation follows, altering one or more genes in the

individual chromosomes to introduce fresh variation and prevent premature convergence to a

local solution. After the crossover and mutation process, a fitness function reevaluates the newly

created individuals. Then, we carry out a new generation selection to determine the population

of the next generation, retaining only the best individuals. We continue this iterative process for

multiple generations until we meet a specific termination condition, such as a predetermined

number of generations or a lack of substantial improvement in fitness values. The final objective

is to discover the most optimal solution to an intricate scheduling problem.

Individual Representation

Each entity within the genetic algorithm corresponds to a single prospective resolution for

the scheduling predicament. Chromosomes, which contain data regarding job sequences and

machine assignments, represent these individuals. Here is the proposed pseudocode that

(5)

(6)

(7)

(8)

(9)

(10)

Tarigan et al … Vol 6(2) 2025: 1280-1296

1287

describes the procedure for creating individuals using the FJSP model.

Pseudocode to create individual:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

FUNCTION create_individual

 INITIALIZE machine_end_times TO dictionary with all machines set to 0

 INITIALIZE job_end_times TO dictionary with all jobs set to 0

 INITIALIZE last_job_type_on_machine TO dictionary with all machines set to

 None

 INITIALIZE job_process_allocation TO dictionary of dictionaries for each job and

 its processes set to None

 SHUFFLE job_list

 FOR EACH job IN job_list

 FOR EACH proc_index, proc IN enumerate(processes[job])

 INITIALIZE best_end_time TO infinity

 INITIALIZE best_machine TO None

 INITIALIZE best_start_time TO None

 INITIALIZE best_process_time TO None

 INITIALIZE best_setup_time TO None

 FOR EACH machine IN available_machines[(job, proc)]

 SET current_job_type TO job_types[job]

 IF last_job_type_on_machine[machine] EQUALS current_job_type

 SET setup_time_current TO setup_time[(machine, current_job_type)] *

 alpha

 ELSE

 SET setup_time_current TO setup_time[(machine, current_job_type)]

 CALCULATE process_time_adjusted AS processing_time[(job, proc)] *

 machine_speed[machine]

 CALCULATE start_time AS MAX of machine_end_times[machine] and

 job_end_times[job]

 CALCULATE end_time AS start_time + process_time_adjusted +

 setup_time_current

 IF end_time < best_end_time

 UPDATE best_end_time TO end_time

 UPDATE best_machine TO machine

 UPDATE best_start_time TO start_time

 UPDATE best_process_time TO process_time_adjusted

 UPDATE best_setup_time TO setup_time_current

 APPEND (job, proc, best_machine, best_start_time, best_process_time,

 best_setup_time) TO ind

 UPDATE machine_end_times[best_machine] TO best_end_time

 UPDATE job_end_times[job] TO best_end_time

 UPDATE last_job_type_on_machine[best_machine] TO job_types[job]

 UPDATE job_process_allocation[job][proc] TO best_machine

 RETURN creator.Individual(ind)

END FUNCTION

Fitness Evaluation

Tarigan et al … Vol 6(2) 2025: 1280-1296

1288

We use the fitness function to evaluate each person's excellence based on the resulting

make-up. Individuals with a shorter makespan are believed to have higher fitness. The

implementation uses pseudocode, as depicted below.

Pseudocode to evaluate the individual:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

Function evaluate(individual)

 Initialize:

 job_process_done as dictionary of jobs with lists of boolean (false)

 job_end_times as dictionary with job keys and zero values

 machine_end_times as dictionary with machine keys and zero values

 penalties set to 0

 For each gene in individual

 Extract job, proc, machine, start_time, process_time, setup_time from gene

 proc_index = index of proc in job's process list

 Check if process already done or out of sequence:

 If yes, add 1000 to penalties

 If machine is None:

 Add 10000 to penalties

 Continue to next gene

 Calculate actual start time:

 actual_start = maximum of machine_end_times[machine] and

 job_end_times[job] + setup_time

 end_time = actual_start + process_time

 If due date of current job equals the minimum of all due dates:

 Find jobs with the same due date

 Select job with lowest priority value from these jobs

 If current job is not the selected job:

 Continue to next iteration

 Manage job and machine timings:

 If actual_start < machine_end_times[machine]:

 Add 1000 to penalties

 Else:

 Update machine_end_times[machine] to end_time

 Update job end times:

 job_end_times[job] = end_time

 Mark process as done:

 Set job_process_done[job][proc_index] to true

 Check for due date violations:

 If job_end_times[job] > due_dates[job]:

 Calculate delay = job_end_times[job] - due_dates[job]

 Add delay * late_penalty_factor to penalties

 Compute total fitness:

 max_end_time = find maximum value in job_end_times

 total_fitness = max_end_time + penalties

Tarigan et al … Vol 6(2) 2025: 1280-1296

1289

50

51

:

:

 Return total_fitness

End Function

Genetic Operations

The execution phases of a genetic algorithm consist of three primary stages: selection,

crossover, and mutation. The selection process uses a tournament selection method to determine

the reproductive capability of individuals based on their fitness value. During the crossover

stage, the crossover operator chooses two individuals as parents and merges them to generate

new progeny. The mutation stage occurs when people experience genetic mutations, which

include altering small parts of their chromosomes and bringing new variants into the population.

Algorithm Parameters

The genetic algorithm is executed with the following parameters: population size, which

represents the total count of individuals in a population; crossover probability, which denotes

the likelihood of selecting two individuals for the crossover process; mutation probability,

which indicates the likelihood of an individual undergoing a genetic mutation; and the number

of generations, which signifies the total number of iterations performed by the algorithm.

Model Validation and Verification

Authentic data from the industrial industry serves as the validation for the model. We

executed multiple test scenarios to assess the model's performance across different production

settings. We compare the findings of the genetic algorithm with those of classical scheduling

algorithms to assess its superiority in minimizing makespan.

We conducted experimentation using the parameters and data specified in Table 1.
Table 1 - Parameters of Genetic Algorithm

Parameter Value

Population Size 100

Iteration Cycles 50

Crossover Rate 0.5

Crossover Two Point Crossover

Mutation Rate 0.2

We conduct an experiment using real data and specified parameters to verify the

successful execution of the genetic algorithm, which includes the individual creation function

and fitness evaluation function tailored to the FJSP mathematical model. The experiment

utilizes data that conforms to the format depicted in Fig. 4 above.

Executing the genetic algorithm model with the parameters listed in Table 1 yields the

results shown in Table 2 below:
Table 2 - Output Genetic Algorithm Processing

Generation Evaluations Min Max Avg Std

0 100 19437,6 403924,39 124022,435 119737,604

1 71 19437,6 16781833,3 457124,287 1746894,45

2 72 19437,6 8902560,03 559018,4 1560520,09

3 64 19437,6 4821242,06 178435,374 599782,226

4 62 19437,6 10785124,6 228200,947 1102360,05

5 55 19437,6 6280934,81 277160,279 1007041,46

6 59 19437,6 6759818,39 209885,271 793325,421

7 72 19437,6 7297970,96 432877,257 1324457,04

8 49 19437,6 3671933,85 106150,453 374423,028

9 65 19437,6 1491297,77 91870,0958 201631,431

10 64 19437,6 4108470,42 117675,655 429386,364

11 55 19437,6 792138,24 69627,981 135709,056

12 54 19437,6 4762791,7 107960,393 490773,183

Tarigan et al … Vol 6(2) 2025: 1280-1296

1290

13 53 19437,6 789138,24 44958,3339 107861,82

14 58 19437,6 3200881,77 75981,9919 359201,668

15 54 19437,6 1773886 90011,0427 277372,581

16 65 19437,6 504981,746 36281,7654 63415,7611

17 60 19437,6 1991480,79 57484,2642 206436,592

18 57 19437,6 434502,028 32314,63 57911,751

19 56 19437,6 1097112,06 37206,7141 117043,817

20 63 19437,6 997610,046 39334,4485 114680,941

21 48 19437,6 714664,569 29662,0678 70173,043

22 61 19437,6 2583451,78 51230,3994 255970,937

23 54 19437,6 2333563,52 74713,094 275503,494

24 57 19437,6 630696,934 35100,9773 72482,4448

25 52 19437,6 1841130,48 49721,6673 207417,777

26 61 19437,6 405827,593 28828,1265 46524,5268

27 56 19437,6 2597247,5 87815,8148 320329,138

28 59 19437,6 1847543,01 53817,2176 203993,441

29 48 19437,6 1173889,99 39816,6459 122979,469

30 63 19437,6 2154731,48 53816,8303 220529,887

31 72 19437,6 1620819,64 43411,0812 169051,725

32 60 19437,6 3158325,4 122629,185 476905,137

33 61 19437,6 515750,378 26813,2249 49372,1196

34 55 19437,6 1689160,35 54977,9955 203349,922

35 57 19437,6 2261273,75 56956,7813 241489,41

36 48 19437,6 5446138,41 89076,9857 546259,038

37 55 19437,6 262361,544 26852,0144 34772,7626

38 62 19437,6 1151732,63 43009,2897 123874,808

39 49 19437,6 1224703,61 55867,9959 165951,322

40 47 19437,6 2229909,45 61490,2475 241300,353

41 57 19437,6 1384854,33 37479,5284 139011,81

42 64 19437,6 1232839,93 54346,6454 158726,525

43 65 19437,6 1597624,2 61960,7218 214574,825

44 51 19437,6 1252527,84 58964,0339 200669,681

45 56 19437,6 2647005,9 69176,9255 295462,49

46 70 19437,6 244130,857 24886,4946 24049,265

47 57 19437,6 1337193,73 55828,0065 189262,955

48 60 19437,6 1477005,83 44464,4103 152787,525

49 53 19437,6 786102,844 36261,2875 103377,165

50 70 19437,6 1352691,44 52086,5605 187421,39

Analysis of the Results
The experiment yielded results that demonstrate the capabilities of the constructed model

when using the genetic algorithm refer to Table 2 above, as shown in Fig. 5 below. The diagram

illustrates the fitness statistics throughout multiple generations of the genetic algorithm. The

graph illustrates three fundamental metrics: the minimal fitness, the average fitness, and the

standard deviation of fitness for each generation. The red line represents the minimal fitness

Tarigan et al … Vol 6(2) 2025: 1280-1296

1291

value, which has a tendency to fall and thereafter stabilize as generations advance, suggesting

the algorithm's ability to discover superior solutions. The blue line depicts the mean fitness,

which exhibits a declining and stabilizing pattern, indicating an enhancement in the overall

quality of solutions within the population. The grey region represents the standard deviation of

fitness, which indicates the degree of variety in the population. This variation tends to diminish

as time progresses, suggesting that the algorithm is moving towards the ideal solution. In

general, the graph demonstrates that the genetic algorithm is effectively optimizing the answer,

achieving convergence within a specific number of generations.

Fig. 5. Fitness Statistic Over Generations

4. Results and Discussions

The extraction stage is the initial phase, where we collect and validate data from multiple

sources to ensure precision. Subsequently, in the transform phase, the acquired data undergoes

processing and organization, ensuring its readiness for utilization. After conversion, the load

phase sends the processed data to the repository. During the execution stage, the system applies

the genetic algorithm to the data repository to identify the most optimal solution. e system

presents the optimal schedule derived from the optimization process. In these stages, the study

ensures a systematic execution of each step, from extraction to algorithm execution, to achieve

the best possible scheduling results.
Table 3 - Data Processing for Flexible Packaging Manufacture

Job Type
Running

Meter
Colour Process Code Min Speed

Ratio

Speed

Setup

Time

J57 22 162223 9 P1 M3 200 0,5 150

J57 22 162223 9 P2 M4 200 1 90

J57 22 162223 9 P2 M5 200 0,75 90

J57 22 162223 9 P2 M6 200 0,5 90

J57 22 162223 9 P2 M7 200 1 90

J57 22 162223 9 P3 M8 200 1 90

J57 22 162223 9 P4 M9 80 1 60

J57 22 162223 9 P4 M10 80 0,75 60

J57 22 162223 9 P4 M11 80 0,75 60

J57 22 162223 9 P4 M12 80 0,5 60

Tarigan et al … Vol 6(2) 2025: 1280-1296

1292

J57 22 162223 9 P4 M13 80 0,125 60

J57 22 162223 9 P4 M14 80 1 90

J57 22 162223 9 P5 M15 80 0,75 90

Table 3 displays the outcomes of data processing for a production task involving product

type J57. This particular product has a production length of 162223 meters and utilizes a total of

9 distinct colors. The provided data contains comprehensive information for each production

process, including a Process List with the sequence number (No), the name and code of the

machine used, the number of colors processed at each stage, the minimum machine speed

(MinSpeed), the machine speed ratio (Ratio Speed), and the machine setup time (Setup Time).

This means during the first procedure we will print at a B1 printing machine (M3) with a

minimum velocity of 200, velocity ratio of.5, and setup duration =150 if, for example, you

would like to produce tickets. Its existence allows us to schedule merged production schedules -

and plan accordingly how each operation would be executed at full efficiency, about the

machine capacity that is available for use. This access provides more accurate scheduling and

lets you pull insights on areas that can be improved operationally.

Results

We conducted a series of experiments using a Genetic Adaptive Scheduling System

(GASS) model to improve the production scheduling process before creating a Gantt chart to

display the most efficient scheduling. The goal of this experiment is to reduce the longest job

duration and optimize task distribution among the available computers. We anticipate that the

GA model, by leveraging authentic industry data and powerful hardware, will deliver a

scheduling solution that not only minimizes machine idle time but also enhances overall

productivity. We will display the outcomes of this model through a Gantt chart, which will

illustrate the order and duration of each task on the respective machines. This will provide a

clear and comprehensive depiction of the optimal scheduling that emerges.

Fig. 6. Gantt Chart Output by Genetic Algorithm Model

Fig. 6 Gantt Chart Output by Genetic Algorithm Model. The Order and Machine

Efficiency Information is the most capable plan of production for order work to machines Task-

wise. Every colored block on this plot is a unique task that some machine needs to do within its

allotted time. Taking into account variables such as product type, linear meters to run, work

importance, and machine capacity the model determines a schedule in an automated manner.

The outcomes show that the proposed model is capable of assigning jobs to machines

accurately, solving allocation problems without idle state, and zero downtime in order to satisfy

continuous goods stream. As a result, industries are now in perfect condition to go with the

schedule made for them and improve both operational efficiency as well as effectiveness while

Tarigan et al … Vol 6(2) 2025: 1280-1296

1293

meeting their specific dynamic production requirements. This automation plan allows

enterprises to address market demands quickly, utilize resources efficiently, and enhance

production.

We conducted the Genetic Adaptive Scheduling System (GASS) model experiment on an

Apple M2 Pro laptop with 16GB of memory. Table 4 below displays the results of this

experiment. This hardware guarantees efficient and rapid execution of the scheduling process

and makespan computation by harnessing the laptop's high processing power and extensive

memory capacity. The experimental results demonstrate the superiority of the Genetic Adaptive

Scheduling System (GASS) approach in generating a more efficient schedule when compared to

traditional approaches, in terms of both scheduling time and overall work completion time

(makespan).
Table 4 - Comparison of Conventional Method vs GASS Method

Job Qty
Conventional Method GASS Method

Time Makespan Time Makespan

10 50 15,19 0,49 5,4

15 75 22,785 0,49 8,1

20 100 30,38 0,49 10,8

25 125 37,975 0,49 13,5

30 150 45,57 0,49 16,2

35 175 53,165 0,49 18,9

40 200 60,76 0,49 21,6

45 225 68,355 0,49 24,3

50 250 75,95 0,49 27

In Table 4 shown above, performances of traditional scheduling methods were compared

with GASS-based techniques for different job quantities. In both timetabling, the "Time"

column shows the time taken to generate a schedule, and one side of "Makespan' row

demonstrates the total used for execution (makespan) by each method.

This table also shows that the scheduling time is frequently reduced (to 0.49 unit-time) in

the GA technique compared to the conventional method. The larger the number of jobs (from 50

to more than say around 250 units a year) this advantage becomes even more pronounced. In

addition, the GASS model results with far better makespan than a typical approach. As an

example, the results of 10 jobs should be a makespan of respectively 5.4 (GASS methodology)

and a lengthened to approximately three times as long if using traditional methods ending in

about 15.19 As the number of jobs increases, this trend is confirmed as again (always) GASS

results in lower makespans. For example, for 50 jobs the makespan is equal to 27 when obtained

by the GASS method and the conventional approach yields a value of makespan as high as

75.95.

5. Conclusion

This study presents a comprehensive dataset designed to support research and

development in Flexible Job Shop Scheduling Problems (FJSS), particularly for dynamic

production environments. The dataset incorporates critical real-world factors such as machine

flexibility, varying processing times, job priorities, setup times, and machine downtimes,

offering a robust foundation for advanced optimization techniques.

The dataset is specifically tailored for the implementation and evaluation of the Genetic

Adaptive Scheduling System (GASS), a modified genetic algorithm framework. By integrating

enhanced mutation and selection processes, GASS provides significant improvements in

scheduling efficiency, achieving up to a 45.3% reduction in makespan within the flexible

packaging industry. This performance underscores its potential as a scalable and adaptable

solution for dynamic scheduling challenges.

The inclusion of real-world constraints ensures the dataset's applicability across various

industries, including printing, electronics, and pharmaceuticals. Researchers can leverage this

Tarigan et al … Vol 6(2) 2025: 1280-1296

1294

dataset to explore new methods for addressing complex scheduling problems, including multi-

objective optimization, dynamic adaptability, and real-time decision-making.

Future work should focus on expanding the dataset to include additional dynamic factors,

such as variable demand patterns and energy constraints, and testing its applicability in different

industrial scenarios. Moreover, integrating the dataset with machine learning models could

provide further insights into predictive and adaptive scheduling strategies.

Acknowledgment

We would like to thank PT. Intikemas Putra Makmur for the great help and cooperation

This observation facility, and the data sources that help enable it are things we thank for every

day; our work in the Lapp Constituent Survey would not be possible without a steady flow of

this kind of data. Observation in a real industry was given and a detail understanding of the

system along with practical data that played a significant role indirectly in making development

more accurate as well as an activity based scheduling model. We would like to thank PT.

Intikemas Putra Makmur, for their invaluable assistance in supporting us throughout the

research of development process!!

References

Abderrahim, M. (2020). Manufacturing 4.0 operations scheduling with AGV battery

management constraints. Energies, 13(18). https://doi.org/10.3390/en13184948

Awad, M. A. (2021). An Efficient Modified Genetic Algorithm for Integrated Process Planning-

Job Scheduling. 2021 International Mobile, Intelligent, and Ubiquitous Computing

Conference, MIUCC 2021, 319–323.

https://doi.org/10.1109/MIUCC52538.2021.9447610

Baykasoğlu, A., Madenoğlu, F. S., & Hamzadayı, A. (2020). Greedy randomized adaptive

search for dynamic flexible job-shop scheduling. Journal of Manufacturing Systems, 56,

425–451. https://doi.org/10.1016/j.jmsy.2020.06.005

Fan, J., Zhang, C., Liu, Q., Shen, W., & Gao, L. (2022). An improved genetic algorithm for

flexible job shop scheduling problem considering reconfigurable machine tools with

limited auxiliary modules. Journal of Manufacturing Systems, 62, 650–667.

https://doi.org/10.1016/j.jmsy.2022.01.014

Ghaleb, M. (2020). Real-time production scheduling in the Industry-4.0 context: Addressing

uncertainties in job arrivals and machine breakdowns. Computers and Operations

Research, 123. https://doi.org/10.1016/j.cor.2020.105031

Hong, T. Y., & Chien, C. F. (2020). A simulation-based dynamic scheduling and dispatching

system with multi-criteria performance evaluation for Industry 3.5 and an empirical study

for sustainable TFT-LCD array manufacturing. International Journal of Production

Research, 58(24), 7531–7547. https://doi.org/10.1080/00207543.2020.1777342

Huang, X., & Yang, L. (2019). A hybrid genetic algorithm for multi-objective flexible job shop

scheduling problem considering transportation time. International Journal of Intelligent

Computing and Cybernetics, 12(2), 154–174. https://doi.org/10.1108/IJICC-10-2018-

0136

Lei, K. (2024). Large-Scale Dynamic Scheduling for Flexible Job-Shop with Random Arrivals

of New Jobs by Hierarchical Reinforcement Learning. IEEE Transactions on Industrial

Informatics, 20(1), 1007–1018. https://doi.org/10.1109/TII.2023.3272661

Li, K., Deng, Q., Zhang, L., Fan, Q., Gong, G., & Ding, S. (2021). An effective MCTS-based

algorithm for minimizing makespan in dynamic flexible job shop scheduling problem.

Computers and Industrial Engineering, 155. https://doi.org/10.1016/j.cie.2021.107211

Li, Y. (2020). Machine learning and optimization for production rescheduling in Industry 4.0.

International Journal of Advanced Manufacturing Technology, 110(9), 2445–2463.

https://doi.org/10.1007/s00170-020-05850-5

Li, Y., Gu, W., Yuan, M., & Tang, Y. (2022). Real-time data-driven dynamic scheduling for

flexible job shop with insufficient transportation resources using hybrid deep Q network.

Robotics and Computer-Integrated Manufacturing, 74.

https://doi.org/10.1016/j.rcim.2021.102283

Tarigan et al … Vol 6(2) 2025: 1280-1296

1295

Luo, X. (2020). Improved genetic algorithm for solving flexible job shop scheduling problem.

Procedia Computer Science, 166, 480–485. https://doi.org/10.1016/j.procs.2020.02.061

Luo, X., Qian, Q., & Fu, Y. F. (2020). Improved genetic algorithm for solving flexible job shop

scheduling problem. Procedia Computer Science, 166, 480–485.

https://doi.org/10.1016/j.procs.2020.02.061

Meng, L. (2023). An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job

Shop Scheduling Problem. Sensors, 23(8). https://doi.org/10.3390/s23083815

Psarommatis, F. (2020). Improved heuristics algorithms for re-scheduling flexible job shops in

the era of zero defect manufacturing. Procedia Manufacturing, 51, 1485–1490.

https://doi.org/10.1016/j.promfg.2020.10.206

Qin, Z. (2021). Self-organizing manufacturing network: A paradigm towards smart

manufacturing in mass personalization. Journal of Manufacturing Systems, 60, 35–47.

https://doi.org/10.1016/j.jmsy.2021.04.016

Rossit, D. A., Tohmé, F., & Frutos, M. (2019). A data-driven scheduling approach to smart

manufacturing. Journal of Industrial Information Integration, 15, 69–79.

https://doi.org/10.1016/j.jii.2019.04.003

Samsonov, V. (2021). Manufacturing control in job shop environments with reinforcement

learning. ICAART 2021 - Proceedings of the 13th International Conference on Agents

and Artificial Intelligence, 2, 589–597.

https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103850187&

origin=inward

Sana, S. S., Ospina-Mateus, H., Arrieta, F. G., & Chedid, J. A. (2019). Application of genetic

algorithm to job scheduling under ergonomic constraints in manufacturing industry.

Journal of Ambient Intelligence and Humanized Computing, 10(5), 2063–2090.

https://doi.org/10.1007/s12652-018-0814-3

Shao, W. (2021). Effective constructive heuristics for distributed no-wait flexible flow shop

scheduling problem. Computers and Operations Research, 136.

https://doi.org/10.1016/j.cor.2021.105482

Singh, K., & Sundar, S. (2019). A hybrid steady-state genetic algorithm for the min-degree

constrained minimum spanning tree problem. European Journal of Operational

Research, 276(1), 88–105. https://doi.org/10.1016/j.ejor.2019.01.002

Soares, L. C. R. (2020). Biased random-key genetic algorithm for scheduling identical parallel

machines with tooling constraints. European Journal of Operational Research, 285(3),

955–964. https://doi.org/10.1016/j.ejor.2020.02.047

Tarigan, M., Gaol, F. L., Mauritsius, T., & Budiharto, W. (2023). Scheduling Production in the

Flexible Packaging Industry Using Mathematical Models and Genetic Algorithms. 2023

International Conference on Informatics Engineering, Science & Technology

(INCITEST), 1–5. https://doi.org/10.1109/INCITEST59455.2023.10397033

Tian, Z. (2023). Dynamic energy-efficient scheduling of multi-variety and small batch flexible

job-shop: A case study for the aerospace industry. Computers and Industrial Engineering,

178. https://doi.org/10.1016/j.cie.2023.109111

Türkyılmaz, A. (2020). A research survey: heuristic approaches for solving multi objective

flexible job shop problems. Journal of Intelligent Manufacturing, 31(8), 1949–1983.

https://doi.org/10.1007/s10845-020-01547-4

Umam, M. S., Mustafid, M., & Suryono, S. (2021). A hybrid genetic algorithm and tabu search

for minimizing makespan in flow shop scheduling problem. Journal of King Saud

University - Computer and Information Sciences.

https://doi.org/10.1016/j.jksuci.2021.08.025

Wang, Y., & Zhu, Q. (2021). A Hybrid Genetic Algorithm for Flexible Job Shop Scheduling

Problem with Sequence-Dependent Setup Times and Job Lag Times. IEEE Access, 9,

104864–104873. https://doi.org/10.1109/ACCESS.2021.3096007

Xie, J. (2023). A hybrid genetic tabu search algorithm for distributed flexible job shop

scheduling problems. Journal of Manufacturing Systems, 71, 82–94.

https://doi.org/10.1016/j.jmsy.2023.09.002

Tarigan et al … Vol 6(2) 2025: 1280-1296

1296

Xu, B. (2020). Genetic programming with delayed routing formultiobjective dynamic flexible

job shop scheduling. Evolutionary Computation, 29(1), 75–105.

https://doi.org/10.1162/evco_a_00273

Zhang, F. (2021). Evolving Scheduling Heuristics via Genetic Programming with Feature

Selection in Dynamic Flexible Job-Shop Scheduling. IEEE Transactions on Cybernetics,

51(4), 1797–1811. https://doi.org/10.1109/TCYB.2020.3024849

Zhang, F. (2022). Multitask Genetic Programming-Based Generative Hyperheuristics: A Case

Study in Dynamic Scheduling. IEEE Transactions on Cybernetics, 52(10), 10515–10528.

https://doi.org/10.1109/TCYB.2021.3065340

Zhang, F. (2023). Multitask Multiobjective Genetic Programming for Automated Scheduling

Heuristic Learning in Dynamic Flexible Job-Shop Scheduling. IEEE Transactions on

Cybernetics, 53(7), 4473–4486. https://doi.org/10.1109/TCYB.2022.3196887

Zhang, S. (2021a). A hybrid multi-objective approach for real-time flexible production

scheduling and rescheduling under dynamic environment in Industry 4.0 context.

Computers and Operations Research, 132. https://doi.org/10.1016/j.cor.2021.105267

Zhang, S. (2021b). Dual resource constrained flexible job shop scheduling based on improved

quantum genetic algorithm. Machines, 9(6). https://doi.org/10.3390/machines9060108

Zhang, X., Liao, Z., Ma, L., & Yao, J. (2022). Hierarchical multistrategy genetic algorithm for

integrated process planning and scheduling. Journal of Intelligent Manufacturing, 33(1),

223–246. https://doi.org/10.1007/s10845-020-01659-x

Zhao, Y., & Zhang, H. (2021). Application of machine learning and rule scheduling in a job-

shop production control system. International Journal of Simulation Modelling, 20(2),

410–421. https://doi.org/10.2507/IJSIMM20-2-CO10

Zheng, P., Zhang, P., Wang, J., Zhang, J., Yang, C., & Jin, Y. (2022). A data-driven robust

optimization method for the assembly job-shop scheduling problem under uncertainty.

International Journal of Computer Integrated Manufacturing, 35(10–11), 1043–1058.

https://doi.org/10.1080/0951192X.2020.1803506

Zhou, L. (2020). Deep reinforcement learning-based dynamic scheduling in smart

manufacturing. Procedia CIRP, 93, 383–388. https://doi.org/10.1016/j.procir.2020.05.163

Zhu, H., Chen, M., Zhang, Z., & Tang, D. (2019). An adaptive real-time scheduling method for

flexible job shop scheduling problem with combined processing constraint. IEEE Access,

7, 125113–125121. https://doi.org/10.1109/ACCESS.2019.2938548

Zhu, K. (2023). Dynamic distributed flexible job-shop scheduling problem considering

operation inspection. Expert Systems with Applications, 224.

https://doi.org/10.1016/j.eswa.2023.119840

Zhuang, Z., Huang, Z., Chen, L., & Qin, W. (2019). A Heuristic Rule Based on Complex

Network for Open Shop Scheduling Problem with Sequence-Dependent Setup Times and

Delivery Times. IEEE Access, 7, 140946–140956.

https://doi.org/10.1109/ACCESS.2019.2944296

