Analysis of Fire Simulation on Polyurethane Foam Using FDS in a University Meeting Room

Authors

  • Pratomo Setyadi State University Of Jakarta
  • Dewi Muflihah Universitas Negeri Jakarta

DOI:

https://doi.org/10.37385/jaets.v4i2.1473

Keywords:

FDS, Fire, Smoke, HRR, Ventilation

Abstract

The polyurethane foam material is commonly used and marketed in two forms, namely flexible and rigid. Flexible foam is used as a cushion, with various applications for commercial products such as chair support. Therefore, this study aims to describe the occurrence of a fire situation in a university room filled with many polyurethane foam chairs. It also aims to provide awareness regarding potential flame hazards, by using a fire modelling method with FDS. The results showed that fires on PU foam materials produced a high HRR and a wide spread of flame and smoke. From this context, the harmful effects of the fire on the room occupants were emphasized. The results obtained are expected to support the theory of compartment fire, flame distribution in solid materials, PU Foam inferno behaviour, etc. It is also expected to provide additional fire protection and evacuation training for room occupants.

Downloads

Download data is not yet available.

References

Antonov, S., & Borisov, B. (2018). Fire safety and fire dynamics of a school room simulated in FDS computer program. 256–259. https://icestconf.org/proceedings-of-papers/

Babrauskas, V. (2016a). Heat Release Rate. SFPE Handbook of Fire Protection Engineering, Fifth Edition, 1–3493. https://doi.org/10.1007/978-1-4939-2565-0

Babrauskas, V. (2016b). The Cone Calorimeter. SFPE Handbook of Fire Protection Engineering Editor-in-Chief Fifth Edition, 154–182. https://doi.org/10.1007/978-1-4939-2565-0

BSN. (2000). Tata Cara Perencanaan Dan Pemasangan Sistem Springkler Otomatik Untuk Pencegahan Bahaya Kebakaran Pada Bangunan Gedung. https://dinasdamkar.sukabumikab.go.id/wp-content/uploads/2017/10/SNI-03-1735-2000-Tata-cara-perencanaan-akses-bangunan-dan-akses-lingkungan-untuk-pencegahan-bahaya-kebakaran-pada-bangunan-gedung.pdf

Buchanan, A. H., & Abu, A. (2017). Structural design for fire safety (second edi). https://www.researchgate.net/publication/318744848_Structural_Design_for_Fire_Safety_Second_Edition

Carosio, F., & Fina, A. (2019). Three organic/inorganic nanolayers on flexible foam allow retaining superior flame retardancy performance upon mechanical compression cycles. Frontiers in Materials, 6. https://doi.org/10.3389/fmats.2019.00020

Date, P., & Material, S. (2004). A Comparison of Three Fire Models in the Simulation of Accidental Fires. https://escholarship.org/uc/item/66b5995f

Davie County, N. F. M. O. (2018). Stages Of Fire Growth. https://www.daviecountync.gov/883/Davie-County-Fire-Marshals-Office-SOGs

Drysdale, D. (2011). An introduction to fire dynamics. Wiley. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119975465

Forney, G. P. (2020). Smokeview Volume 1: User’s Guide. Nist Sp 1017-1, I(Version 5), 162. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1017-1.pdf

Friedman, R. (1977). “Ignition and Burning of Solids”, in Fire Standards and Safety. ASTM STP 614. American Society for Testing and Materials. https://doi.org/https://www.astm.org/stp614-eb.html

Hall, S., & Evarts, B. (2022). Fire Loss in the United States During 2021 (NFPA ® ) Key Findings. https://www.nfpa.org/~/media/Files/News and Research/Fire statistics and reports/US Fire Problem/osFireLoss.ashx

Hidayah, R. S. (2016). Pengaruh Tata Letak Terhadap Perambatan Nyala Api Berbasis Metode FDS (Fire Dynamics Simulator) Pada Parkiran Sepeda Motor Kampus A Universitas Negeri Jakarta [State University of Jakarta]. https://doi.org/http://lib.unj.ac.id/tugasakhir/index.php?p=show_detail&id=43770&keywords=pengaruh+tata+letak

Himoto, K., & Suzuki, K. (2021). Computational framework for assessing the fire resilience of buildings using the multi-layer zone model. Reliability Engineering & System Safety, 216, 108023. https://doi.org/10.1016/J.RESS.2021.108023

Hopkin, C., Spearpoint, M., & Hopkin, D. (2019). A Review of Design Values Adopted for Heat Release Rate Per Unit Area. In Fire Technology (Vol. 55, Issue 5, pp. 1599–1618). Springer New York LLC. https://doi.org/10.1007/s10694-019-00834-8

Horová, K., Jána, T., & Wald, F. (2013). Temperature heterogeneity during travelling fire on experimental building. Advances in Engineering Software, 62–63, 119–130. https://doi.org/10.1016/J.ADVENGSOFT.2013.05.001

Huang, C. H., Lou, C. W., Chuang, Y. C., Liu, C. F., Yu, Z. C., & Lin, J. H. (2015). Rigid/Flexible Polyurethane Foam Composite Boards with Addition of Functional Fillers: Acoustics Evaluations (Buih Poliuretana Tegar/Fleksibel Papan Komposit dengan Penambahan Fungsian Pengisi: Penilaian Akustik). In Sains Malaysiana (Vol. 44, Issue 12). https://core.ac.uk/download/pdf/33345016.pdf

Hwang, C.-H., Lock, A., Bundy, M., Johnsson, E., & Ko, G. H. (2010). Studies on Fire Characteristics in Over- and Underventilated Full-scale Compartments. Journal of Fire Science, 28(5), 459–486. https://doi.org/10.1177/0734904110363106

Janssens, M. (2016). Calorimetry. SFPE Handbook of Fire Protection Engineering Editor-in-Chief Fifth Edition, 107–153. https://doi.org/10.1007/978-1-4939-2565-0

Krasny, J., & Babrauskas, V. (1985). Fire Behaviour of Upholstered Furniture. https://www.researchgate.net/publication/234392640_Fire_Behavior_of_Upholstered_Furniture

Laszlo, G., Hajdu, F., & Kuti, R. (2022). Experimental study on examining the fire load of a small compartment. Pollack Periodica, 17(1), 133–138. https://doi.org/10.1556/606.2021.00422

Ling, D., & Kan, K. (2011). Numerical Simulations on Fire and Analysis of the Spread Characteristics of Smoke in Supermarket. In Communications in Computer and Information Science: Vol. 176 CCIS (Issue PART 2, pp. 7–13). https://doi.org/10.1007/978-3-642-21802-6_2

Matheislová, H., Jahoda, M., Kundrata, T., & Dvo?ák, O. (2010). CFD simulations of compartment fires. Chemical Engineering Transactions, 21, 1117–1122. https://doi.org/10.3303/CET1021187

McGrattan, K. B., McDermott, R., Vanella, M., Hostikka, S., & Floyd, J. (2020). Fire dynamics simulator Technical Reference Guide. 1, 181. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1018.pdf

McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., & Vanella, M. (2020). Sixth Edition Fire Dynamics Simulator User ’s Guide (FDS). National Institute of Standards and Technology,NIST Special Publication 1019, Sixth Edit, 434. https://doi.org/10.6028/NIST.sp.1019

McKenna, S. T., & Hull, T. R. (2016). The Fire Toxicity of Polyurethane Foams. Fire Science Reviews, 5(1). https://doi.org/10.1186/s40038-016-0012-3

Merci, B. (2016). Introduction to Fluid Mechanics. SFPE Handbook of Fire Protection Engineering Editor-in-Chief Fifth Edition, 20–43. https://doi.org/10.1007/978-1-4939-2565-0

Mowrer, F. W., & Williamson, R. B. (1990). Methods to Characterize Heat Release Rate Data. In Fire Safety Journal (Vol. 16). https://doi.org/10.1016/0379-7112(90)90009-4

Nanda, Y. F. (2016). Karakteristik Penyebaran Api Ketika Terjadi Kebakaran Berbasis Metode FDS (Fire Dynamics Simulator) Pada Parkiran Sepeda Motor Kampus A Universitas Negeri Jakarta [State University of Jakarta]. http://lib.unj.ac.id/tugasakhir/index.php?p=show_detail&id=44302&keywords=nanda+yola

National Fire Protection Association. (2015). NFPA 101, life safety code. https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=101

Novanandini, E. R., Dewi, O. C., & Nugroho, Y. S. (2021). Evaluation of fire safety maintenance of an educational laboratory facility. IOP Conference Series: Earth and Environmental Science, 933(1). https://doi.org/10.1088/1755-1315/933/1/012029

Nyankuru, O., Omuterema, S., Nyandiko, N., & Muliro, M. (2017). Evaluating the Effectiveness of Fire Safety Training on Occupants’ Response to Fire in Selected Public Buildings in Nairobi County, Kenya. International Journal of Sciences: Basic and Applied Research (IJSBAR) International Journal of Sciences: Basic and Applied Research, 36(5), 166–173. http://gssrr.org/index.php?journal=JournalOfBasicAndApplied

Ocran, N. (2012). Fire loads and design fires for mid-rise buildings. https://curve.carleton.ca/system/files/etd/89a6c8d7-c968-4bcc-b89b-5a1f5c3bb408/etd_pdf/1f4fc35c6b66222f65eee04c4cad5ba7/ocran-fireloadsanddesignfiresformidrisebuildings.pdf

Park, J., & Kwark, J. (2021). Experimental study on fire sources for full-scale fire testing of simple sprinkler systems installed in multiplexes. Fire, 4(1), 1–16. https://doi.org/10.3390/fire4010008

Pramudya, I., & Andesta, D. (2022). Safety Application And Health Work (K3) At Department of CNC Lathe Using Hazard Identification Risk Assessment And Risk Control (HIRARC) Method (Case Study Of PT. Swadaya Graha). 4(1), 318–324. https://doi.org/10.37385/jaets.v4i1

Septian, F. (2017). Pengaruh Waktu Aktivasi Sistem Sprinkler Otomatis Terhadap Laju Perambatan Api Berbasis FDS (Fire Dynamics Simulator) Pada Bangunan Rumah Susun Ciracas [State University of Jakarta]. http://repository.unj.ac.id/id/eprint/30461

Setyadi, P., Yoga, N. G., Kusumohadi, C. S., Triyono, T., & Nanda, Y. F. (2021). Flame spread simulation of fire occurrence at motorcycle parking building. IOP Conference Series: Materials Science and Engineering, 1098(6), 062082. https://doi.org/10.1088/1757-899x/1098/6/062082

T, R., L, B.-V., & E, G. (2011). Development of the Thermal Decomposition Mechanism of Polyether Polyurethane Foam Using Both Condensed and Gas-Phase Release Data. https://www.researchgate.net/publication/233296742_Development_of_the_Thermal_Decomposition_Mechanism_of_Polyether_Polyurethane_Foam_Using_Both_Condensed_and_Gas-Phase_Release_Data

Thomas, I. R., Moinuddin, K. A. M., & Bennetts, I. D. (2007). The effect of fuel quantity and location on small enclosure fires. Journal of Fire Protection Engineering, 17(2), 85–102. https://doi.org/10.1177/1042391506064908

Valasek, L., & Glasa, J. (2017). On realization of cinema hall fire simulation using fire dynamics Simulator. Computing and Informatics, 36(4), 971–1000. https://doi.org/10.4149/cai_2017_4_971

Wang, M. Y., Han, X., Wu, G. H., & Liu, Q. Q. (2008). Simulation Analysis of Temperature Characteristics for a Theater Fire. International Symposium on Innovations and Sustainability of Structures in Civil Engineering, 1–2, 1145–1152.

Wang, N., Xu, Y., & Wang, S. (2022). Interpretable boosting tree ensemble method for multisource building fire loss prediction. Reliability Engineering & System Safety, 225, 108587. https://doi.org/10.1016/J.RESS.2022.108587

Wijaya, R. F., Putri, A., Mayasari, N., Hardinata, R. S., Pembangunan, U., Budi, P., & Author, C. (2022). Applications Know Preparation For Earthquakes For Elementary School Student. 4(1), 168–179. https://doi.org/10.37385/jaets.v4i1

Wu, G. H., Han, X., Wang, M. Y., & Liu, Q. (2008). Simulation Analysis of Smoke Distribution Features for a Theater Fire. International Symposium on Innovations and Sustainability of Structures in Civil Engineering, 1–2, 1153–1159.

Zhang, X., Yang, M., Wang, J., & He, Y. (2010). Effects of computational domain on numerical simulation of building fires. Journal of Fire Protection Engineering, 20(4), 225–251. https://doi.org/10.1177/1042391510367349

Zou, G., & Chang, W. (2005). Evaluation of the Field Model, Fire Dynamics Simulator, for a Specific Experimental Scenario. Journal of Fire Protection Engineering, 15(2), 77–92. https://doi.org/10.1177/1042391505047304

Downloads

Published

2023-06-05

How to Cite

Setyadi, P., & Muflihah, D. (2023). Analysis of Fire Simulation on Polyurethane Foam Using FDS in a University Meeting Room. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 644–654. https://doi.org/10.37385/jaets.v4i2.1473