Phytoarchitecture Design Requires a Plant Selection Framework to Combat Air Contaminants in Building Areas Sustainably
DOI:
https://doi.org/10.37385/jaets.v5i1.1757Keywords:
air quality, biodiversity, climate adaptation, greenspace, sustainable building, tree speciesAbstract
Empowerment of plants to maintain the indoor and outdoor air quality of a building area promises occupant health and sustainable use of the building. In supporting plants' functional role, this study proposes a novel approach for a general framework for selecting plants. The method to achieve the objectives of this study was based on previous empirical studies conducted in various places under different environmental quality conditions. The essential findings of the selected literature became part of the technical feasibility process in selecting plants. Significant results indicate the mechanism of controlling airborne contaminants by plants through aerial parts and growth media. Gaseous pollutants can be absorbed along with carbon dioxide absorption, while particulate matter is deposited on the leaf surface. Some other contaminants enter the plant growth medium, which plants can process with microbes in the root zone. The use of plants for indoor and outdoor phytoremediation is various plant species, sourced and selected from a retrospective study, locally available and standard plants, and popular plants. These findings were developed to include assessments of contaminant-plant interactions and plant-specific experiments. The implications of the plant selection framework can be one of the promising methods in designing sustainable building phytoarchitectures.
Downloads
References
Abas, M. A., Hambali, K. A., Hassin, N. H., Karim, M. F. A., Ismail, L., & Rosli, H. (2020). Antifungal activity of selected Malaysia’s local medicinal plants against sick building syndrome (SBS) fungi. Asian Journal of Plant Sciences, 19(3), 240–245. https://doi.org/10.3923/ajps.2020.240.245
Abbass, O. A., Sailor, D. J., & Gall, E. T. (2017). Effectiveness of indoor plants for passive removal of indoor ozone. Building and Environment, 119, 62–70. https://doi.org/10.1016/j.buildenv.2017.04.007
Abimaje, Joshua, Kandar, M. Z. B., & Aminu, D. Y. (2018). Light Shelf as a Daylighting System in a Tropical Climate Office Space. International Journal of Engineering & Technology, 7(2.29), Article 2.29. https://doi.org/10.14419/ijet.v7i2.29.14259
Bandehali, S., Miri, T., Onyeaka, H., & Kumar, P. (2021). Current State of Indoor Air Phytoremediation Using Potted Plants and Green Walls. Atmosphere, 12(4), Article 4. https://doi.org/10.3390/atmos12040473
Bataineh, K., & Al Rabee, A. (2022). Design Optimization of Energy Efficient Residential Buildings in Mediterranean Region. Journal of Sustainable Development of Energy, Water and Environment Systems, 10(2), 1–21. https://doi.org/10.13044/j.sdewes.d9.0385
Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G., & Sousa, S. I. V. (2014). The microenvironmental modelling approach to assess children’s exposure to air pollution – A review. Environmental Research, 135, 317–332. https://doi.org/10.1016/j.envres.2014.10.002
Burnett, A. C., Rogers, A., Rees, M., & Osborne, C. P. (2016). Carbon source–sink limitations differ between two species with contrasting growth strategies. Plant, Cell & Environment, 39(11), 2460–2472. https://doi.org/10.1111/pce.12801
Buru, T. H., Buta, E., Bucur, G., & Cantor, M. (2019). Children–plant interaction using therapeutic horticulture intervention in a Romanian school. Acta Universitatis Sapientiae, Agriculture and Environment, 11(1), 130–138. https://doi.org/10.2478/ausae-2019-0012
Chen, J., Yu, X., Bi, H., & Fu, Y. (2017). Indoor simulations reveal di×erences among plant species in capturing particulate matter. PLoS ONE, 12(5), e0177539. https://doi.org/10.1371/journal.pone.0177539
Coakley, S., Cahill, G., Enright, A.-M., O’Rourke, B., & Petti, C. (2019). Cadmium Hyperaccumulation and Translocation in Impatiens Glandulifera: From Foe to Friend? Sustainability, 11(18), Article 18. https://doi.org/10.3390/su11185018
Deng, L., & Deng, Q. (2018). The basic roles of indoor plants in human health and comfort. Environmental Science and Pollution Research, 25(36), 36087–36101. https://doi.org/10.1007/s11356-018-3554-1
Dhanraj, D. (2020). Performance of foliage ornamentals in hydroponic nutrient solutions. Journal of Floriculture and Landscaping, 6, 9–13. https://doi.org/10.25081/jfcls.2020.v6.5753
Dong, Y., Fang, Z., Xu, Y., Wang, Q., & Zou, X. (2019). The toxic effects of three active pharmaceutical ingredients (APIs) with different efficacy to Vibrio fischeri. Emerging Contaminants, 5, 297–302. https://doi.org/10.1016/j.emcon.2019.08.004
Du, Y., Liu, Y., Liu, B., & Wang, T. (2020). Complete chloroplast genome of Callicarpa formosana Rolfe, a famous ornamental plant and traditional medicinal herb. Mitochondrial DNA Part B, 5(3), 3383–3384. https://doi.org/10.1080/23802359.2020.1820399
Eichelmann, E., Mantoani, M. C., Chamberlain, S. D., Hemes, K. S., Oikawa, P. Y., Szutu, D., Valach, A., Verfaillie, J., & Baldocchi, D. D. (2022). A novel approach to partitioning evapotranspiration into evaporation and transpiration in flooded ecosystems. Global Change Biology, 28(3), 990–1007. https://doi.org/10.1111/gcb.15974
Erhirhie, E. O., Ihekwereme, C. P., & Ilodigwe, E. E. (2018). Advances in acute toxicity testing: Strengths, weaknesses and regulatory acceptance. Interdisciplinary Toxicology, 11(1), 5–12. https://doi.org/10.2478/intox-2018-0001
Fischer, K., Sydow, S., Griebel, J., Naumov, S., Elsner, C., Thomas, I., Abdul Latif, A., & Schulze, A. (2020). Enhanced Removal and Toxicity Decline of Diclofenac by Combining UVA Treatment and Adsorption of Photoproducts to Polyvinylidene Difluoride. Polymers, 12(10), Article 10. https://doi.org/10.3390/polym12102340
Gawro?ska, H., & Bakera, B. (2015). Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Quality, Atmosphere and Health, 8(3), 265–272. https://doi.org/10.1007/s11869-014-0285-4
Gillio Meina, E., Raes, K., & Liber, K. (2019). Models for the acute and chronic aqueous toxicity of vanadium to Daphnia pulex under a range of surface water chemistry conditions. Ecotoxicology and Environmental Safety, 179, 301–309. https://doi.org/10.1016/j.ecoenv.2019.04.052
Gong, Y., Zhou, T., Wang, P., Lin, Y., Zheng, R., Zhao, Y., & Xu, B. (2019). Fundamentals of Ornamental Plants in Removing Benzene in Indoor Air. Atmosphere, 10(4), Article 4. https://doi.org/10.3390/atmos10040221
Gunasinghe, Y. H. K. I. S., Rathnayake, I. V. N., & Deeyamulla, M. P. (2021). Plant and Plant Associated Microflora: Potential Bioremediation Option of Indoor Air Pollutants. Nepal Journal of Biotechnology, 9(1), 63–74. https://doi.org/10.3126/njb.v9i1.38669
Handara, V. A., Illya, G., Tippabhotla, Sasi. K., Shivakumar, R., & Budiman, A. S. (2016). Center for Solar Photovoltaics (CPV) at Surya University: Novel and Innovative Solar Photovoltaics System Designs for Tropical and Near-Ocean Regions (An Overview and Research Directions). Procedia Engineering, 139, 22–31. https://doi.org/10.1016/j.proeng.2015.09.211
Hassan, A., Qi bing, C., & Tao, J. (2019). Brainwave measurements for lay activities with real and artificial ornamental plants. European Journal of Horticultural Science, 84(4), 199–205. https://doi.org/10.17660/eJHS.2019/84.4.1
He, Y., Zhang, Y., Peng, C., Wan, X., Guo, Z., & Xiao, X. (2021). Distribution Characteristics and Risk Assessment of Heavy Metals in Soil and Street Dust with Different Land Uses, a Case in Changsha, China. International Journal of Environmental Research and Public Health, 18(20), 10733. https://doi.org/10.3390/ijerph182010733
Hong, S.-H., Hong, J., Yu, J., & Lim, Y. (2017). Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants. Environmental Health and Toxicology, 32, e2017006. https://doi.org/10.5620/eht.e2017006
Hu, J., Li, J., Wu, F., Wu, S., Ye, Z., Lin, X., & Wong, M. H. (2013). Arbuscular mycorrhizal fungi induced differential Cd and P phytoavailability via intercropping of upland kangkong (Ipomoea aquatica Forsk.) with Alfred stonecrop (Sedum alfredii Hance): Post-harvest study. Environmental Science and Pollution Research, 20(12), 8457–8463. https://doi.org/10.1007/s11356-013-1903-7
Hung, C.-Y., Zhang, J., Bhattacharya, C., Li, H., Kittur, F. S., Oldham, C. E., Wei, X., Burkey, K. O., Chen, J., & Xie, J. (2021). Transformation of Long-Lived Albino Epipremnum aureum ‘Golden Pothos’ and Restoring Chloroplast Development. Frontiers in Plant Science, 12. https://www.frontiersin.org/articles/10.3389/fpls.2021.647507
Jung, S. K., Chun, M. Y., & Lee, C. H. (2015). Plant Growth Responses and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System. Korean Journal of Plant Resources, 28(5), 665–674. https://doi.org/10.7732/kjpr.2015.28.5.665
Kapalo, P., Domni?a, F., Baco?iu, C., & Spodyniuk, N. (2018). The Impact of Carbon Dioxide Concentration on the Human Health—Case Study. Journal of Applied Engineering Sciences, 8(1), 61–66. https://doi.org/10.2478/jaes-2018-0008
Keyte, I. J., Albinet, A., & Harrison, R. M. (2016). On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments. Science of The Total Environment, 566–567, 1131–1142. https://doi.org/10.1016/j.scitotenv.2016.05.152
Kosiorek, M., & Wyszkowski, M. (2019). Remediation of cobalt-polluted soil after application of selected substances and using oat (Avena sativa L.). Environmental Science and Pollution Research, 26(16), 16762–16780. https://doi.org/10.1007/s11356-019-05052-x
Kotta, H., Mangkoedihardjo, S., Ludang, Y., & Trisutomo, S. (2018). The design of riparian zone in waterfront area of Tanjung Bunga, Makassar. International Journal of Civil Engineering and Technology, 9(8), 580–584.
Kováts, N., Hubai, K., Diósi, D., Sainnokhoi, T.-A., Hoffer, A., Tóth, Á., & Teke, G. (2021). Sensitivity of typical European roadside plants to atmospheric particulate matter. Ecological Indicators, 124, 107428. https://doi.org/10.1016/j.ecolind.2021.107428
Kumar, S., Das, G., Shin, H.-S., Kumar, P., & Patra, J. K. (2018). Diversity of Plant Species in The Steel City of Odisha, India: Ethnobotany and Implications for Conservation of Urban Bio-Resources. Brazilian Archives of Biology and Technology, 61, e18160650. https://doi.org/10.1590/1678-4324-2017160650
Kumar, V., Kothiyal, N. C., Liu, Y., Saruchi, & Pathak, D. (2019). Identification of polycyclic aromatic hydrocarbons in roadside leaves (Ficus benghalensis) as a measure of air pollution in a semi arid region of northern, Indian city-A smart city. Environmental Technology & Innovation, 16, 100485. https://doi.org/10.1016/j.eti.2019.100485
Kwon, S.-J., Cha, S.-J., Lee, J.-K., & Park, J. H. (2020). Evaluation of accumulated particulate matter on roadside tree leaves and its metal content. Journal of Applied Biological Chemistry, 63(2), 161–168. https://doi.org/10.3839/jabc.2020.022
Leung, D. Y. C. (2015). Outdoor-indoor air pollution in urban environment: Challenges and opportunity. Frontiers in Environmental Science, 2(JAN), 69. https://doi.org/10.3389/FENVS.2014.00069/BIBTEX
Li, Y., Tian, D., Yang, H., & Niu, S. (2018). Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 32(1), 95–105. https://doi.org/10.1111/1365-2435.12975
Ludang, Y., & Mangkoedihardjo, S. (2009). Leaf area based transpiration factor for phytopumping of high organic matter concentration. Journal of Applied Sciences Research, 5(10), 1416–1420.
Luo, N., Weng, W., Xu, X., Hong, T., Fu, M., & Sun, K. (2019). Assessment of occupant-behavior-based indoor air quality and its impacts on human exposure risk: A case study based on the wildfires in Northern California. Science of The Total Environment, 686, 1251–1261. https://doi.org/10.1016/j.scitotenv.2019.05.467
Malinowska, E., Jankowski, K., Wi?niewska-Kad?ajan, B., Sosnowski, J., Kolczarek, R., Jankowska, J., & Ciepiela, G. A. (2015). Content of Zinc and Copper in Selected Plants Growing Along a Motorway. Bulletin of Environmental Contamination and Toxicology, 95(5), 638–643. https://doi.org/10.1007/s00128-015-1648-8
Mangkoedihardjo, S. (2007). Physiochemical performance of leachate treatment, a case study for separation technique. Journal of Applied Sciences, 7(23), 3827–3830. https://doi.org/10.3923/jas.2007.3827.3830
Meili, N., Acero, J. A., Peleg, N., Manoli, G., Burlando, P., & Fatichi, S. (2021). Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city. Building and Environment, 195, 107733. https://doi.org/10.1016/j.buildenv.2021.107733
Mohanty, M. (2016). Post-Harvest Management of Phytoremediation Technology. Journal of Environmental & Analytical Toxicology, 6(5), 1000398. https://doi.org/10.4172/2161-0525.1000398
Morgan, A. L., Torpy, F. R., Irga, P. J., Fleck, R., Gill, R. L., & Pettit, T. (2022). The botanical biofiltration of volatile organic compounds and particulate matter derived from cigarette smoke. Chemosphere, 295, 133942. https://doi.org/10.1016/j.chemosphere.2022.133942
Nduka, D. O., Ogunbayo, B., Ajao, A., Ogundipe, K., & Babalola, B. (2018). Survey datasets on sick building syndrome: Causes and effects on selected public buildings in Lagos, Nigeria. Data in Brief, 20, 1340–1346. https://doi.org/10.1016/j.dib.2018.08.182
Niu, X.-Z., Field, J. A., Paniego, R., Pepel, R. D., Chorover, J., Abrell, L., & Sierra-Alvarez, R. (2021). Bioconcentration potential and microbial toxicity of onium cations in photoacid generators. Environmental Science and Pollution Research, 28(7), 8915–8921. https://doi.org/10.1007/s11356-020-12250-5
Oberti, I., & Plantamura, F. (2017). The Inclusion of Natural Elements in Building Design: The Role of Green Rating Systems. International Journal of Sustainable Development and Planning, 12(02), 217–226. https://doi.org/10.2495/SDP-V12-N2-217-226
Ögutucu, G., Özdemir, G., Acararicin, Z., & Aydin, A. (2021). Trend Analysis of Lead Content in Roadside Plant and Soil Samples in Turkey. Turkish Journal of Pharmaceutical Sciences, 18(5), 581–588. https://doi.org/10.4274/tjps.galenos.2021.45389
Omores, R. A., Wewers, F., Ikhide, P. O., Farrar, T., & Giwa, A. (2017). Spatio–Temporal Distribution of Polycyclic Aromatic Hydrocarbons in Urban Soils in Cape Town, South Africa. International Journal of Environmental Research, 11(2), 189–196. https://doi.org/10.1007/s41742-017-0018-2
Park, H. M., & Lee, A. K. (2020). Efficiency of removal of indoor pollutants by pistia stratiotes, eichhornia crassipes and hydrocotyle umbellata. Journal of People, Plants, and Environment, 23(1), 15–21. https://doi.org/10.11628/ksppe.2020.23.1.15
Pérez-Sánchez, R. M., Flores, J., Jurado, E., & González-Salvatierra, C. (2015). Growth and ecophysiology of succulent seedlings under the protection of nurse plants in the Southern Chihuahuan Desert. Ecosphere, 6(3), art36. https://doi.org/10.1890/ES14-00408.1
Pettit, T., Irga, P. J., Surawski, N. C., & Torpy, F. R. (2019). An assessment of the suitability of active green walls for NO2 reduction in green buildings using a closed-loop flow reactor. Atmosphere, 10(12), 801. https://doi.org/10.3390/ATMOS10120801
Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: In search of conceptual origins. Sustainability Science, 14(3), 681–695. https://doi.org/10.1007/s11625-018-0627-5
Ratnayake, S. P. (2016). Bioconcentration modelling of alcohol ethoxylates by quantitative structure activity relationship approach: A first look. Journal of the National Science Foundation of Sri Lanka, 44(4), Article 4. https://doi.org/10.4038/jnsfsr.v44i4.8027
Razif, M., Budiarti, V. E., & Mangkoedihardjo, S. (2006). Appropriate fermentation process for tapioca’s wastewater in Indonesia. Journal of Applied Sciences, 6(13), 2846–2848. https://doi.org/10.3923/jas.2006.2846.2848
Riza, M., & Hoque, S. (2021). Phytoremediation of Copper and Zinc Contaminated Soil around Textile Industries using Bryophyllum pinnatum Plant. Journal of Ecological Engineering, 22(4), 88–97. https://doi.org/10.12911/22998993/134035
Rodríguez-Chávez, T. B., Rine, K. P., Almusawi, R. M., O’Brien-Metzger, R., Ramírez-Andreotta, M., Betterton, E. A., & Sáez, A. E. (2021). Outdoor/Indoor Contaminant Transport by Atmospheric Dust and Aerosol at an Active Smelter Site. Water, Air, & Soil Pollution, 232(6), 226. https://doi.org/10.1007/s11270-021-05168-2
Samudro, H., Samudro, G., & Mangkoedihardjo, S. (2022a). Overview of Indoor Plants: Phytoarchitecture as A Building Health Platform. Journal of Design and Built Environment, 22(3), 69–87.
Samudro, H., Samudro, G., & Mangkoedihardjo, S. (2022b). Retrospective Study on Indoor Bioaerosol—Prospective Improvements to Architectural Criteria in Building Design. Israa University Journal for Applied Science, 6(1), 23–41. https://doi.org/10.52865/LSBY9811
Saxena, P., & Sonwani, S. (2020). Remediation of ozone pollution by ornamental plants in indoor environment. Global Journal of Environmental Science and Management, 6(4), 497–508. https://doi.org/10.22034/gjesm.2020.04.06
Sayed, N. E. (2020). Spray Golden Pothos and Croton Plants with Glutathione and Bilirubin to Purify the Indoor Air from Pollutants. Journal of Plant Production, 11(5), 439–453. https://doi.org/10.21608/jpp.2020.102766
Schützenhofer, S., Kovacic, I., & Rechberger, H. (2022). Assessment of sustainable use of material resources in the Architecture, Engineering and Construction industry—A conceptual Framework proposal for Austria. [Journal of Sustainable Development of Energy, Water and Environment Systems], [10]([4]), [1]-[21]. https://doi.org/10.13044/j.sdewes.d10.0417
Sedayu, A., & Mangkoedihardjo, S. (2018). Performance evaluation of housing contractor by applying the principles of environmentally friendly infrastructure. International Journal of Civil Engineering and Technology, 9(4), 1014–1022.
Shafiq, M., Iqbal, M. Z., Arayne, M. S., & Athar, M. (2012). Biomonitoring of heavy metal contamination in Pongamia pinnata and Peltophorum pterocarpum growing in the polluted environment of Karachi, Pakistan. Journal of Applied Botany and Food Quality, 85(1), 120–125.
Sharonova, N., & Breus, I. (2012). Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene. Science of The Total Environment, 424, 121–129. https://doi.org/10.1016/j.scitotenv.2012.02.009
She, W., Guo, L., Gao, J., Zhang, C., Wu, S., Jiao, Y., & Zhu, G. (2022). Spatial Distribution of Soil Heavy Metals and Associated Environmental Risks near Major Roads in Southern Tibet, China. International Journal of Environmental Research and Public Health, 19(14), Article 14. https://doi.org/10.3390/ijerph19148380
Suárez-Cáceres, G. P., & Pérez-Urrestarazu, L. (2021). Removal of volatile organic compounds by means of a felt-based living wall using different plant species. Sustainability (Switzerland), 13(11), 6393. https://doi.org/10.3390/su13116393
Tak, A. A., & Kakde, U. B. (2019). Evaluation of trace elements and particulate matter deposition on plant foliage exposed to vehicular pollution. Acta Botanica Croatica, 78(2), 164–168. https://doi.org/10.2478/botcro-2019-0014
Tao, J., Hassan, A., Qibing, C., Yinggao, L., Li, G., Jiang, M., Li, D., Nian, L., Bing-Yang, L., & Ziqin, Z. (2020). Psychological and Physiological Relaxation Induced by Nature-Working with Ornamental Plants. Discrete Dynamics in Nature and Society, 2020, e6784512. https://doi.org/10.1155/2020/6784512
Toderas, N. (2021). Possibilities of using representatives of the genus Fuchsia L. from the collection of the “Alexandru Ciubotaru” National Botanical Garden (Institute) as outdoor ornamental plants in the Republic of Moldova. Journal of Botany, 13(1(22)), 53–58. https://doi.org/10.52240/1857-2367.2021.1(22).08
Torpy, F. R., Pettit, T., & Irga, P. J. (2018). Applied Horticultural Biotechnology for the Mitigation of Indoor Air Pollution. Journal of People, Plants, and Environment, 21(6), 445–460. https://doi.org/10.11628/ksppe.2018.21.6.445
Varghese, J. T., & Ghosh, S. (2016). Trace Species and Air Pollutant Transport in Green Facades: A Vernonia Elaeagnifolia Case Study for a Built Environment. Frontiers in Heat and Mass Transfer, 7(1), 34. https://doi.org/10.5098/hmt.7.34
Wang, Y., Zhu, Y.-C., Li, W., Yao, J., Reddy, G. V. P., & Lv, L. (2021). Binary and ternary toxicological interactions of clothianidin and eight commonly used pesticides on honey bees (Apis mellifera). Ecotoxicology and Environmental Safety, 223, 112563. https://doi.org/10.1016/j.ecoenv.2021.112563
Weyens, N., Thijs, S., Popek, R., Witters, N., Przybysz, A., Espenshade, J., Gawronska, H., Vangronsveld, J., & Gawronski, S. W. (2015). The Role of Plant–Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants. International Journal of Molecular Sciences, 16(10), Article 10. https://doi.org/10.3390/ijms161025576
Wolverton, B. C., & Nelson, M. (2020). Using plants and soil microbes to purify indoor air: Lessons from NASA and Biosphere 2 experiments. Field Actions Science Reports. The Journal of Field Actions, Special Issue 21, Article Special Issue 21.
Wróblewska, K., & Jeong, B. R. (2021). Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. Environmental Sciences Europe, 33(1), 110. https://doi.org/10.1186/s12302-021-00547-2
Yao, X., Wu, J., Gong, X., Lang, X., Wang, C., Song, S., & Ali Ahmad, A. (2019). Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional values of vegetation community in an alpine meadow of the Qinghai-Tibet Plateau. Ecological Engineering, 130, 80–93. https://doi.org/10.1016/j.ecoleng.2019.01.016
Zhang, B., Cao, D., & Zhu, S. (2020). Use of plants to clean polluted air: A potentially effective and low-cost phytoremediation technology. BioResources, 15(3), 4650–4654.
Zhang, Y., Li, C., Ji, X., Yun, C., Wang, M., & Luo, X. (2020). The knowledge domain and emerging trends in phytoremediation: A scientometric analysis with CiteSpace. Environmental Science and Pollution Research, 27(13), 15515–15536. https://doi.org/10.1007/s11356-020-07646-2