The Cuckoo Optimization Algorithm Enhanced Visualization of Morphological Features of Diabetic Retinopathy


  • Dafwen Toresa Universitas Lancang Kuning
  • Fana Wiza Universitas Lancang Kuning
  • Ahmad Ade Irwanda Universitas Lancang Kuning
  • Wenti Sasparita Abiyus Universitas Lancang Kuning
  • Edriyansyah Edriyansyah Universitas Hang Tuah Pekanbaru
  • Taslim Taslim Universitas Lancang Kuning



Diabetic retinopathy, Fundus image, Cuckoo algoritm, Image Enhancement


This research compares strategies for identifying diabetic retinopathy (DR) using fundus image and discusses the efficiency of various image pre-processing techniques to enhance the quality of fundus images. Fundus images in medical image processing often suffer from non-uniform lighting, low contrast, and noise issues, which necessitate image pre-processing to enhance their quality. The study evaluates the effectiveness of several optimization techniques in selecting the best technique for identifying DR. One of the image pre-processing techniques compared in the study involves comparing negative images, dark contrast stretch, light contrast stretch, and partial contrast stretch, which are then evaluated using standard performance metrics such as NIQE, PNSR, MSE, and entropy. The results are further optimized using the Cuckoo Search Algorithm. The proposed technique produces better image quality improvements in several performance metrics, such as MSE, NIQE, PSNR, and entropy. Bright Contrast Stretch outperforms other techniques in NIQE Mean 5.2850, Entropy 5.0193, NIQE Standard deviation 0.2261, and Entropy 0.2612.


Download data is not yet available.

Author Biographies

Fana Wiza, Universitas Lancang Kuning



Ahmad Ade Irwanda, Universitas Lancang Kuning



Wenti Sasparita Abiyus, Universitas Lancang Kuning



Edriyansyah Edriyansyah, Universitas Hang Tuah Pekanbaru



Taslim Taslim, Universitas Lancang Kuning




Abdul-nasir, A. S., Mashor, M. Y., & Mohamed, Z. (2013). Colour Image Segmentation Approach for Detection of Malaria Parasites Using Various Colour Models and k -Means Clustering. 10(1), 41–55.

Acharya, U. K., & Kumar, S. (2021). Genetic algorithm based adaptive histogram equalization (GAAHE) technique for medical image enhancement. Optik, 230(January), 166273.

Alyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20(03).

Astorga, J. E. O., Wang, L., Yamada, S., Fujiwara, Y., Du, W., & Peng, Y. (2022). Automatic Detection of Microaneurysms in Fundus Images. International Journal of Software Innovation, 11(1), 1–14.

Bennet, M. A., Dharini, D., Priyadharshini, S. M., & Mounica, N. L. (2016). Detection of blood vessel Segmentation in retinal images using Adaptive filters. 8(4), 290–298.

Bhateja, V., Satapathy, S. C., Travieso-González, C. M., & Aradhya, V. N. M. (2021). Correction to: Data Engineering and Intelligent Computing.

Bhimavarapu, U., & Battineni, G. (2022). Automatic Microaneurysms Detection for Early Diagnosis of Diabetic Retinopathy Using Improved Discrete Particle Swarm Optimization. Journal of Personalized Medicine, 12(2).

Chen, L. (2022). Application of Cuckoo Search Algorithm in Cost Estimation of Building Energy Engineering. Wireless Communications and Mobile Computing, 2022.

Datta, N. S., Dutta, H. S., De, M., & Mondal, S. (2013). An Effective Approach: Image Quality Enhancement for Microaneurysms Detection of Non-dilated Retinal Fundus Image. Procedia Technology, 10, 731–737.

Deng, J., Tang, P., Zhao, X., Pu, T., Qu, C., & Peng, Z. (2022). Local Structure Awareness-Based Retinal Microaneurysm Detection with Multi-Feature Combination. Biomedicines, 10(1), 1–15.

Firdausy, K., Sutikno, T., & Prasetyo, E. (2007). Image Enhancement Using Contrast Stretching on Rgb and Ihs Digital Image. TELKOMNIKA (Telecommunication Computing Electronics and Control), 5(1), 45.

Gayathri, K., Narmadha, D., Thilagavathi, K., Pavithra, K., & Pradeepa, M. (2014). Detection of Dark Lesions from Coloured Retinal Image Using Curvelet Transform and Morphological Operation. 2, 15–21.

Jadhav, A. S., & Patil, P. B. (2018). Detection of blood vessels in retinal images for diagnosis of diabetics. Proceedings of the 2nd International Conference on Inventive Systems and Control, ICISC 2018, Icisc, 888–891.

Kaur, I., & Singh, L. M. (2016). A Method of Disease Detection and Segmentation of Retinal Blood Vessels using Fuzzy C-Means and Neutrosophic Approach. Imperial Journal of Interdisciplinary Research (IJIR), 2(6), 551–557.

Kusuma Whardana, A., & Suciati, N. (2014). A Simple Method for Optic Disk Segmentation from Retinal Fundus Image. International Journal of Image, Graphics and Signal Processing, 6(11), 36–42.

Maheswari, M. S., & Punnolil, A. (2014). A novel approach for retinal lesion detection in diabetic retinopathy images. People, 4(6).

Maini, R., & Aggarwal, H. (2010). A Comprehensive Review Of Image Enhancement Techniques. International Journal of Innovative Research and Growth, 8(6), 8–13.

Mayya, V., Kamath S?, S., & Kulkarni, U. (2021). Automated microaneurysms detection for early diagnosis of diabetic retinopathy: A Comprehensive review. Computer Methods and Programs in Biomedicine Update, 1, 100013.

Mazlan, N., Yazid, H., & Sabri, N. R. (2018). Enhancement of Retinal Images for Microaneurysms Detection in Diabetic Retinopathy. 2018 IEEE 16th Student Conference on Research and Development, SCOReD 2018, 1–5.

Munteanu, C., & Rosa, A. (2000). Towards automatic image enhancement using Genetic Algorithms. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 2, 1535–1542.

Pendekal, M. J., & Gupta, S. (2022). An Ensemble Classifier Based on Individual Features for Detecting Microaneurysms in Diabetic Retinopathy. Indonesian Journal of Electrical Engineering and Informatics, 10(1), 60–71.

Pundikal, M., & Holi, M. S. (2022). Microaneurysms Detection Using Grey Wolf Optimizer and Modified K-Nearest Neighbor for Early Diagnosis of Diabetic Retinopathy. International Journal of Intelligent Engineering and Systems, 15(1), 130–140.

Ramasubramanian, B., & Selvaperumal, S. (2016). A comprehensive review on various preprocessing methods in detecting diabetic retinopathy. International Conference on Communication and Signal Processing, ICCSP 2016, 642–646.

Rosas-Romero, R., Martínez-Carballido, J., Hernández-Capistrán, J., & Uribe-Valencia, L. J. (2015). A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images. Computerized Medical Imaging and Graphics, 44, 41–53.

Salazar-Gonzalez, A., Kaba, D., Li, Y., & Liu, X. (2014). Segmentation of the blood vessels and optic disk in retinal images. IEEE Journal of Biomedical and Health Informatics, 18(6), 1874–1886.

Salihah, A. N. A., Mashor, M. Y., Harun, N. H., & Rosline, H. (2010). Colour Image Enhancement Techniques for Acute Leukaemia Blood Cell Morphological Features. 3677–3682.

Sengupta, S., Singh, A., Leopold, H. A., Gulati, T., & Lakshminarayanan, V. (2020). Ophthalmic diagnosis using deep learning with fundus images – A critical review. In Artificial Intelligence in Medicine.

Shiralkar, S., Bahulekar, A., & Jawade, S. (2022). The Cuckoo Search Algorithm: A review. International Research Journal of Engineering and Technology, 1238–1246.

Soares, I., Castelo-Branco, M., & Pinheiro, A. (2023). Microaneurysms detection in retinal images using a multi-scale approach. Biomedical Signal Processing and Control, 79(P2), 104184.

Subramanian, S., Mishra, S., Patil, S., Shaw, K., & Aghajari, E. (2022). Machine Learning Styles for Diabetic Retinopathy Detection: A Review and Bibliometric Analysis. Big Data and Cognitive Computing, 6(4).

Sun, Y., Zhao, Z., Jiang, D., Tong, X., Tao, B., Jiang, G., Kong, J., Yun, J., Liu, Y., Liu, X., Zhao, G., & Fang, Z. (2022). Low-Illumination Image Enhancement Algorithm Based on Improved Multi-Scale Retinex and ABC Algorithm Optimization. Frontiers in Bioengineering and Biotechnology, 10(April), 1–16.

Swathi, C., Anoop, B. K., Dhas, D. A. S., & Sanker, S. P. (2017). Comparison of different image preprocessing methods used for retinal fundus images. 2017 Conference on Emerging Devices and Smart Systems, ICEDSS 2017, October 2017, 175–179.

Tavakoli, M., Mehdizadeh, A., Aghayan, A., Shahri, R. P., Ellis, T., & Dehmeshki, J. (2021). Automated Microaneurysms Detection in Retinal Images Using Radon Transform and Supervised Learning: Application to Mass Screening of Diabetic Retinopathy. IEEE Access, 9, 67302–67314.

Toresa, D., Azrul, M., Shahril, E., Hazlyna, N., Abu, J., & Amnur, H. (2021). Automated Detection and Counting of Hard Exudates for Diabetic Retinopathy by using Watershed and Double Top-Bottom Hat Filtering Algorithm. 5(September), 242–247.

Yadav, D., Karn, A. K., Giddalur, A., Dhiman, A., Sharma, S., Muskan, & Yadav, A. K. (2021). Microaneurysm detection using color locus detection method. Measurement: Journal of the International Measurement Confederation, 176(July 2020), 109084.

Zhang, M., Jiang, W., Zhou, X., Xue, Y., & Chen, S. (2019). A hybrid biogeography-based optimization and fuzzy C-means algorithm for image segmentation. Soft Computing, 23(6), 2033–2046.




How to Cite

Toresa, D., Wiza, F., Irwanda, A. A., Abiyus, W. S., Edriyansyah, E., & Taslim, T. (2023). The Cuckoo Optimization Algorithm Enhanced Visualization of Morphological Features of Diabetic Retinopathy. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 929–939.