Classification Academic Data using Machine Learning for Decision Making Process


  • Elin Haerani Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Fadhilah Syafria Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Fitra Lestari Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Novriyanto Novriyanto Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Ismail Marzuki Interdigital



Data science, Decision Tree, Graduate on Time, Machine Learning


One of the qualities of higher education is determined by the success rate of student learning. Assessment of student success rates is based on student graduation on time. Sultan Syarif Kasim State Islamic University Riau is one of the state universities in Riau, with a total of 30,000 students. Of all the active students, there are some who are not. Students who are not active in this case will affect the timeliness of their graduation. The university always evaluates the performance of its students to find out information related to the factors that cause students to become inactive so that they are more likely to drop out and what data affect students being able to graduate on time. The evaluation results are stored in an academic database so that the data can later be used as supporting data when making decisions by the university. This research used data science concepts to explore and extract data sets from databases to find models or patterns, as well as new insights that can be used as tools for decision-making. After the data was explored, machine learning concepts were used to identify and classify the data. The method used was the Decision Tree Method. The results of the study found that these two concepts can provide the expected results. Based on the test results, it is known that the attribute that influences the success of student studies is the grade point average (GPA), where the accuracy of the maximum recognition rate is 88.19%.

Keywords : Data science; Decision Tree; Graduate on Time; Machine Learning;


Download data is not yet available.

Author Biographies

Elin Haerani, Universitas Islam Negeri Sultan Syarif Kasim Riau



Fadhilah Syafria, Universitas Islam Negeri Sultan Syarif Kasim Riau



Fitra Lestari, Universitas Islam Negeri Sultan Syarif Kasim Riau




Novriyanto Novriyanto, Universitas Islam Negeri Sultan Syarif Kasim Riau




Ismail Marzuki, Interdigital





Adekitan, A. I., & Salau, O. (2019). The impact of engineering students’ performance in the first three years on their graduation result using educational data mining. Heliyon, 5(2), e01250.

Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students’ performance using educational data mining. Computers and Education, 113, 177–194.

Asroni, A., Masajeng Respati, B., & Riyadi, S. (2018). Penerapan Algoritma C4.5 Untuk Klasifikasi Jenis Pekerjaan Alumni Di Universitas Muhammadiyah. Semesta Teknika, 21(2), 158–165.

Baker, R. S. (2014). Educational Data Mining: An Advance For Intelligent Systems In Education. IEEE, Intelligent Systems., 29(3), 78–82.

BAN-PT. (2011). Buku II: Standar dan Prosedur. In Badan Akreditasi Nasional Perguruan Tinggi ….

Burgos, C., Campanario, M. L., Peña, D. de la, Lara, J. A., Lizcano, D., & Martínez, M. A. (2018). Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout. Computers and Electrical Engineering, 66, 541–556.

Campagni, R., Merlini, D., Sprugnoli, R., & Verri, M. C. (2015). Data mining models for student careers. Expert Systems with Applications, 42(13), 5508–5521.

D. , R., M. , & Giansiracusa, J. K. (2018). Machine Learning And Social Media To Mine And Disseminate Big Scientific Data. 2018 IEEE International Conference on Big Data, 5312–5315.

Dabas, P., & Singh, B. (2021). Analysis Of Data Mining Classification Techniques. 9th International Conference On Reliability, Infocom Technologies And Optimization, ICRITO 2021, 1–3.

Dharmawan, T., Ginardi, H., & Munif, A. (n.d.). Dropout Detection Using Non-Academic Data. 4th International Conference On Science And Technology (Icst). Yogyakarta, Indonesia., 2018.

Dol, S. M., & Jawandhiya, P. M. (2023). Classification Technique and its Combination with Clustering and Association Rule Mining in Educational Data Mining — A survey, Engineering Applications of Artificial Intelligence. A Survey. Engineering Applications of Artificial Intelligence. Elsevier Ltd., 122.

Dol, S. M. (2021). Use Of Classification Technique In Educational Data Mining. International Conference on Nascent Technologies in Engineering, ICNET 2021 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 1–7. 10.1109/Icnte51185.2021.9487739

Fernandes, E., Holanda, M., Victorino, M., Borges, V., Carvalho, R., & Erven, G. Van. (2019). Educational data mining: Predictive analysis of academic performance of public school students in the capital of Brazil. Journal of Business Research, 94(August 2017), 335–343.

Gorunescu, F. (2011). Data Mining Concept, Models And Techniques. Intelligent Systems Reference Library,Verlag Berlin Heidelb: Springer., 12.

Haryoto, P. P., Okprana, H., & Saragih, I. S. (2021). Algoritma C4.5 Dalam Data Mining Untuk Menentukan Klasifikasi Penerimaan Calon Mahasiswa Baru. Terapan Informatika Nusantara, 2(5), 358–164.

Heredia, D., Amaya, Y., & Barrientos, E. (2015). Student Dropout Predictive Model Using Data Mining Techniques. IEEE Latin America Transactions, 13(9), 3127–3134. 10.1109/Tla.2015.7350068.

Jain, A., Somwanshi, D., Joshi, K., & Bhatt, S. S. (2022). A Review: Data Mining Classification Techniques. 3rd International Conference On Intelligent Engineering And Management (Iciem), 636–642.

Khan, A., Ghosh, S. K., Ghosh, D., & Chattopadhyay, S. (2021). Random wheel: An algorithm for early classification of student performance with confidence. Engineering Applications of Artificial Intelligence, 102(July 2020), 104270.

Kunwar, V., Chandel, K., Sabitha, A. S., & Bansal, A. (. (2016). Chronic Kidney Disease Analysis Using Data Mining Classification Techniques. Proceedings of the 2016 6th International Conference - Cloud System and Big Data Engineering, Confluence 2016, 300–305.

M. , A., & Rahman, A. M. (2016). A Review On Data Mining Techniques And Factors Used In Educational Data Mining To Predict Student Amelioration.

Massulloh, I., & F. (2020). (2020). Implementasi Algoritma C4.5 Untuk Klasifikasi Anak Berkebutuhan Khusus Di Ibnu Sina Stimulasi Center. Eprosiding Sistem Informasi (Potensi), 136–144.

Maulida, R., & B. . (2020). Prediksi Kelulusan Mahasiswa Tepat Waktu Dengan Algoritma C4.5 Dengan Particle Swarm Optimization Pada Univeristas Xyz. Journal Of Artificial Intelligence And Innovative Applications, Issn?: 2716-1501., 1(3), 138–144.

Muhammad, L. J., Besiru Jibrin, M., Yahaya, B. Z., Mohammed Besiru Jibrin, I. A., Ahmad, A., & Amshi, J. M. (. (2020). An Improved C4.5 Algorithm Using Principle Of Equivalent Of Infinitesimal And Arithmetic Mean Best Selection Attribute For Large Dataset. 10th International Conference On Computer And Knowledge Engineering (Iccke). Mashhad, Iran., 6–10.

Natek, S., & Zwilling, M. (2014). Student data mining solution-knowledge management system related to higher education institutions. Expert Systems with Applications, 41(14), 6400–6407.

Oluwaseun, A., & Chaubey, M. S. (2019). Data Mining Classification Techniques On The Analysis Of Student’s Performance. Global Scientific Journal, 7, 79–95.

Osman Hegazi, M., & Abugroon, M. A. (2016). The State Of The Art On Educational Data Mining In Higher Education. International Journal Of Emerging Trends And Technology In Computer Science., 31(1), 46–56.

Patil, R., Salunke, S., Kalbhor, M., & Lomte, R. (2018). Prediction System For Student Performance Using Data Mining Classification. Fourth. International Conference On Computing Communication Control And Automation (Iccubea). Pune, India.

Rasjid, Z. E., & Setiawan, R. (2017). Performance Comparison and Optimization of Text Document Classification using k-NN and Naïve Bayes Classification Techniques. Procedia Computer Science, 116, 107–112.

Sharma, A., Sharma, M. K., & Dwivedi, R. K. (2021). Improved Decision Tree Classification (IDT) Algorithm For Social Media Data. Proceedings of the 2021 10th International Conference on System Modeling and Advancement in Research Trends, SMART 2021 (Pp. 155–157). Institute of Electrical and Electronics Engineers Inc.

Sukhbaatar, O., Ogata, K., & Usagawa, T. (2018). Mining Educational Data To Predict Academic Dropouts: A Case Study In Blended Learning Course. IEEE Region 10 Annual International Conference, Proceedings/TENCON, Institute of Electrical and Electronics Engineers Inc., 2205–2208.

Syukri Mustafa, M., Rizky Ramadhan, M., & Thenata, A. P. (2017). Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Citec Journal, 4(2), 151–162.

Teli, S., & Kanikar, P. (2015a). A Survey on Decision Tree Based Approaches in Data Mining. International Journal Of Advanced Research In Computer Science And Software Engineering, 5(4), 613–617.

Teli, S., & Kanikar, P. . (2015b). A Survey On Decision Tree Based Approaches In Data Mining. International. International Journal of Advanced Research in Computer Science and Software Engineering, 5(4), 613–617.

Turban, E. (2005). Decision Support Systems and Intelligent Systems Edisi Bahasa Indonesia. Andi.

Ukwuoma, C. C., Bo, C., Chikwendu, I. A., & Bondzie-Selby, E. (2019). Performance Analysis Of Students Based On Data Mining Techniques: A Literature Review. 4th Technology Innovation Management And Engineering Science International Conference (Times-Icon).

Utari, M., Warsito, B., & Kusumaningrum, R. (2020). Implementation Of Data Mining For Drop-Out Prediction Using Random Forest Method. 8th International Conference on Information and Communication Technology, ICoICT, 1–5.

Yossy, E. H., Heryadi, Y., & L. (2019). Comparison Of Data Mining Classification Algorithms For Student Performance. In TALE 2019 - 2019 IEEE International Conference on Engineering, Technology and Education. Institute of Electrical and Electronics Engineers Inc., 1–4.

Yu, H., & Zhang, Z. Q. (2018). The Application of Data Mining Technology in Employment Analysis of University Graduates. Proceedings - 17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018, 846–849.

Yuda, O. &. (2022). Penerapan Penerapan Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Random Forest. ATIN - Sains Dan Teknologi Informasi, 8(2), 122–131. 10.33372/stn.v8i2.885

Yunus, M., Ramadhan, H., Aji, D. R., & Yulianto, A. (2021). Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu. Paradigma - Jurnal Komputer Dan Informatika, 23(2).




How to Cite

Haerani, E., Syafria, F., Lestari, F., Novriyanto, N., & Marzuki, I. (2023). Classification Academic Data using Machine Learning for Decision Making Process . Journal of Applied Engineering and Technological Science (JAETS), 4(2), 955–968.