Durian Rind-Based Liquid Smoke as a Natural Preservative for Chicken Meatballs: Effect of Pyrolysis Temperature and Liquid Smoke Concentration
DOI:
https://doi.org/10.37385/jaets.v5i2.2770Keywords:
Durian rind-based liquid smoke, Escherichia coli, Pyrolysis, TVB, TPCAbstract
Liquid smoke is produced by the pyrolysis of biomass. The use of liquid smoke has numerous advantages over traditional smoking methods. The liquid smoke market is well-established and growing, providing an opportunity to commercialize biomass pyrolysis. This study aimed to investigate the utility of durian rind, biomass waste rich in lignin, cellulose, and hemicellulose, as a natural preservative to extend the shelf life of chicken meatballs and to mitigate environmental problems caused by the disposal of untreated durian rind waste. Dried durian rinds with approximately 10% water content were pyrolyzed at temperatures of 300°C (T1 liquid smoke), 340°C (T2 liquid smoke), and 380°C (T3 liquid smoke) using a slow pyrolysis reactor in batch conditions to produce crude liquid smoke, which was then purified by distillation at 190°C. Chicken meatballs were then soaked in liquid smoke solutions with concentrations of 1%, 2%, and 3% for 15 minutes, and the meatballs checked for signs of spoilage every 4 hours. Tests for total volatile base nitrogen (TVB-N), in addition to the total plate count (TPC) and most probable number (MPN) of Escherichia coli bacteria, were performed to evaluate the preservation ability of the liquid smoke. The results indicated that both the pyrolysis temperature and liquid smoke concentration affected the preservation time, with a pyrolysis temperature of T3 and liquid smoke concentration of 3% optimum for chicken meatball preservation. Under these conditions, the meatballs could be stored for 56 hours with TVB-N, TPC, and E. coli MPN values of 21.01 mg N/100 g, 5.37 × 104 CFU/g, and 75 MPN/g, respectively. The findings suggest that liquid smoke derived from durian rinds could be used to preserve chicken meatballs.
Downloads
References
Adzaly, N. Z., Jackson, A., Kang, I., & Almenar, E. (2016). Performance of a novel casing made of chitosan under traditional sausage manufacturing conditions. Meat science, 113, 116-123. https://doi.org/10.1016/j.meatsci.2015.11.023
Aslinah, L. N. F., Mat Yusoff, M., & Ismail-Fitry, M. R. (2018). Simultaneous use of adzuki beans (Vigna angularis) flour as meat extender and fat replacer in reduced-fat beef meatballs (bebola daging). Journal of food science and technology, 55, 3241-3248. https://doi.org/10.1007%2Fs13197-018-3256-1
Budaraga, I. K. (2019, November). Influence of Liquid Smoke Cinnamon Against Attacks Leaf Rot Disease (Phytophthora Infestans) on Potato (Solanum Tuberosum L.). In IOP Conference Series: Earth and Environmental Science (Vol. 347, No. 1, p. 012036). IOP Publishing. http://dx.doi.org/10.1088/1755-1315/347/1/012036
CT, N., Sekhar Chatterjee, N., CG, J., TR, A., Mathew, S., & TK, S. G. (2020). Source-dependent compositional changes in coconut flavoured liquid smoke and its application in traditional Indian smoked fishery products. Food Additives & Contaminants: Part A, 37(10), 1610-1620. https://doi.org/10.1080/19440049.2020.1798030
Dewi, F. C., Tuhuteru, S., Aladin, A., & Yani, S. (2023, May). Potential utilization of liquid smoke Pandanus conoideus as a natural preservative of fish during storage. In AIP Conference Proceedings (Vol. 2596, No. 1). AIP Publishing. https://doi.org/10.1063/5.0120215
Desvita, H., Faisal, M., Mahidin., & Suhendrayatna. (2022). Antimicrobial potential of wood vinegar from cocoa pod shells (Theobroma cacao L.) against Candida albicans and Aspergillus niger. Materials Today: Proceedings, 63, S210-S213. https://doi.org/10.1016/j.matpr.2022.02.410.
Desvita, H., Faisal, M., Mahidin, M., & Suhendrayatna, S. (2021, March). Preliminary study on the antibacterial activity of liquid smoke from cacao pod shells (Theobroma cacao L). In IOP Conference Series: Materials Science and Engineering (Vol. 1098, No. 2, p. 022004). IOP Publishing. http://doi.org/10.1088/1757-899X/1098/2/022004.
Desvita, H., Faisal, M., Mahidin., & Suhendrayatna. (2021). Characteristic of liquid smoke produced from slow pyrolysis of cacao pod shells (Theobroma cacao L). GEOMATE Journal, 20(80), 17-22. http://doi.org/10.21660/2021.80.6154.
Desvita, H., Faisal, M., Mahidin., & Suhendrayatna. (2020). Preservation of meatballs with edible coating of chitosan dissolved in rice hull-based liquid smoke. Heliyon, 6(10). http://doi.org/10.1016/j.heliyon.2020.e05228.
Desvita, H., Faisal, M., Mahidin., & Suhendrayatna. (2020). Edible coating for beef preservation from chitosan combined with liquid Smoke. International Journal of Technology, 11, 817-829. http://doi.org/10.14716/ijtech.v11i4.4039.
Dien, H. A., Montolalu, R. I., & Berhimpon, S. (2019, May). Liquid smoke inhibits growth of pathogenic and histamine forming bacteria on skipjack fillets. In IOP Conference Series: Earth and Environmental Science (Vol. 278, No. 1, p. 012018). IOP Publishing. http://doi.org/10.1088/1755-1315/278/1/012018.
Dien, H. A., Montolalu, R. I., Mentang, F., Berhimpon, S., & Nurkolis, F. (2022). Inhibition of microencapsulated liquid smoke on the foodborne pathogens and histamine-forming bacterias’ growth in tuna loin sashimi: inhibition of liquid smoke microencapsulation. Open Access Macedonian Journal of Medical Sciences (OAMJMS), 10(A), 1200-1206. http://doi.org/10.3889/oamjms.2022.10182.
Faisal, M., & Gani, A. (2018). The effectiveness of liquid smoke produced from palm kernel shells pyrolysis as a natural preservative in fish balls. GEOMATE Journal, 15(47), 145-150. http://doi.org/10.21660/2018.47.06109.
Faisal, M., Desvita, H., & Abubakar, Y. (2022). A Preliminary study on the use of rice husk-based Smoke powder for meatball preservatives. Journal of Food Quality, 2022. http://doi.org/10.1155/2022/7915258.
Faisal, M., Gani, A., & Mulana, F. (2019). Preliminary assessment of the utilization of durian peel liquid smoke as a natural preservative for mackerel [version 6; peer review: 2 approved]. F1000Research, 8. http://doi.org/10.12688/f1000research.18095.6.
Febriani, Y., Swastawati, F., & Fahmi, A. S. (2023, August). Effectiveness of liquid smoke as a preservative agent of barracuda fish cake during cold storage. In IOP Conference Series: Earth and Environmental Science (Vol. 1224, No. 1, p. 012033). IOP Publishing. DOI 10.1088/1755-1315/1224/1/012033.
Fransiska, F. (2022). Uji most probable number (mpn) bakteri coliform dan organoleptik yoghurt bengkoang (Pachyrhizus erosus). Agrofood, 4(2), 15-23.
Hadanu, R., & Lomo, C. P. (2019, November). Organoleptic test analysis and effect of liquid smoke concentration on smoked fish. In IOP Conference Series: Earth and Environmental Science (Vol. 382, No. 1, p. 012017). IOP Publishing. http://dx.doi.org/10.1088/1755-1315/382/1/012017.
Janairo, J. I. B., & Amalin, D. M. (2018). Volatile chemical profile of cacao liquid smoke. International Food Research Journal, 25(1), 213-216.
Kusumaningtyas, R. D., Wulansarie, R., Astuti, W., Hartini, N., & Richana, S. (2019, June). Community empowerment on the biopesticide production from durian peel waste. In ISET 2019: Proceedings of the 5th International Conference on Science, Education and Technology, ISET 2019, 29th June 2019, Semarang, Central Java, Indonesia (p. 350). European Alliance for Innovation. http://dx.doi.org/10.4108/eai.29-6-2019.2290429.
Li, K., Zhong, W., Li, P., Ren, J., Jiang, K., & Wu, W. (2023). Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. International Journal of Biological Macromolecules, 126281. http://doi.org/10.1016/j.ijbiomac.2023.126281.
Martin, E. M., O’Bryan, C. A., Lary Jr, R. Y., Griffis, C. L., Vaughn, K. L., Marcy, J. A., & Crandall, P. G. (2010). Spray application of liquid smoke to reduce or eliminate Listeria monocytogenes surface inoculated on frankfurters. Meat science, 85(4), 640-644. http://doi.org/10.1016/j.meatsci.2010.03.017.
Mentang, F., Montolalu, R. I., Dien, H. A., Ayub, M. E. K. O., & Berhimpon, S. (2022). Shelf life and presence of pathogens in liquid-smoked skipjack pampis packed in vacuum packaging (vp), modified atmosphere packaging (map), and stored at ambient temperature. Nutrición Clínica y Dietética Hospitalaria, 42(4). https://doi.org/10.12873/424.
Naufalin, R. (2019, April). Natural preservation opportunities and challenges in improving food safety. In AIP Conference Proceedings (Vol. 2094, No. 1). AIP Publishing. http://doi.org/10.1063/1.509750.
Permanasari, A. R., Husna, A., Fuadah, R., Sihombing, R. P., Yulistiani, F., & Wibisono, W. (2020, December). The effect of durian husk and coconut shell combination in the liquid smoke generation: A Review. In International Seminar of Science and Applied Technology (ISSAT 2020) (pp. 496-501). Atlantis Press. http://doi.org/10.2991/aer.k.201221.082.
Puke, S., & Galoburda, R. (2020). Factors affecting smoked fish quality: A review. Proceedings of the Research for Rural Development, 35, 132-139. http://doi.org/10.22616/rrd.26.2020.020.
Saloko, S., Darmadji, P., Setiaji, B., & Pranoto, Y. (2014). Antioxidative and antimicrobial activities of liquid smoke nanocapsules using chitosan and maltodextrin and its application on tuna fish preservation. Food Bioscience, 7, 71-79. http://doi.org/10.1016/j.fbio.2014.05.008.
Saputro, H., Liana, D. N., Firdaus, A., Mahmudin, M., Evan, B., Karsa, B. S., ... & Fitriana, L. (2018, November). Preliminary study of pellets refuse derived fuel (RDF-5) based on durian waste for feedstock in fast pyrolysis. In IOP Conference Series: Materials Science and Engineering (Vol. 434, No. 1, p. 012184). IOP Publishing. http://doi.org/10.1088/1757-899X/434/1/012184.
Sari, E., Khatab, U., Desmiarti, R., & Ariansyah, R. (2018, March). Studies of carbonization process on the production of durian peel biobriquettes with mixed biomass coconut and palm shells. In IOP Conference Series: Materials Science and Engineering (Vol. 316, No. 1, p. 012021). IOP Publishing. http://doi.org/10.1088/1757-899X/316/1/012021.
Schwert, R., Verlindo, R., Soares, J. M., Silva, P. F., Cansian, R. L., Steffens, C., ... & Valduga, E. (2020). Effect of liquid smoke extract on the oxidative stability, benzopyrene and sensory quality of calabrese sausage. Current Nutrition & Food Science, 16(3), 343-353. https://doi.org/10.2174/1573401315666190126120749
Shahbaz, M., AlNouss, A., Parthasarathy, P., Abdelaal, A. H., Mackey, H., McKay, G., & Al-Ansari, T. (2020). Investigation of biomass components on the slow pyrolysis products yield using Aspen Plus for techno-economic analysis. Biomass Conversion and Biorefinery, 1-13. http://doi.org/10.1007/s13399-020-01040-1.
Siriphanich, J. (2011). Durian (Durio zibethinus Merr.). In Postharvest biology and technology of tropical and subtropical fruits (pp. 80-116e). Woodhead Publishing. http://doi.org/10.1533/9780857092885.80.
Standar Nasional Indonesia 02-2725:1992. Batas minimum cemaran mikroba pada daging. Dewan Standarisasi Nasional , Jakarta. 1992.
Standar Nasional Indonesia 2354.8:2009. Penentuan kadar total volatil base nitrogen (TVB-N) dan trimetil amin nitrogen (TMA-N) Pada Produk Perikanan. Dewan Standarisasi Nasional, Jakarta. 2009.
Standar Nasional Indonesia 2897: 2008. Metode pengujian cemaran mikroba dalam daging, telur dan susu, serta hasil olahannya, Dewan Standarisasi Nasional, Jakarta. 2008.
Syarif, T., Aladin, A., Modding, B., Wiyani, L., & Dewi, F. C. (2023, May). Application of liquid smoke from pyrolysis byproducts of ulin wood sawdust (Eusideroxylon Zwageri) as a preservative of mackerel (Rastrelliger). In AIP Conference Proceedings (Vol. 2596, No. 1). AIP Publishing. https://doi.org/10.1063/5.0118742.
Wang, Y., Lv, H., Lan, J., Zhang, X., Zhu, K., Yang, S., & Lv, S. (2022). Detection of sodium formaldehyde sulfoxylate, aluminum, and borate compounds in bread and pasta products consumed by residents in Jilin Province, China. Journal of Food Protection, 85(8), 1142-1147. http://doi.org/10.4315/JFP-22-011.
Widayat, W., Yaqin, N., & Al Baarri, A. N. (2018). Study of utilization liquid smoke and carrageenan as a natural antibacterial in manufacturing beef meatballs. In IOP Conference Series: Earth and Environmental Science (Vol. 102, No. 1, p. 012060). IOP Publishing. http://doi.org/10.1088/1755-1315/102/1/012060.
Yuliusman, Y., Ayu, M. P., Hanafi, A., & Nafisah, A. R. (2020, May). Activated carbon preparation from durian peel wastes using chemical and physical activation. In AIP Conference Proceedings (Vol. 2230, No. 1). AIP Publishing. https://doi.org/10.1063/5.0002348.
Zhao, C., Chen, H., Wu, X., & Shan, R. (2023). Exploiting the waste biomass of durian shell as a heterogeneous catalyst for biodiesel production at room temperature. International Journal of Environmental Research and Public Health, 20(3), 1760. http://doi.org/10.3390/ijerph20031760.