Comparison Between Face and Gait Human Recognition Using Enhanced Convolutional Neural Network
DOI:
https://doi.org/10.37385/jaets.v5i1.2806Keywords:
Soft biometrics, Face Recognition, Gait Recognition, MediaPipe, Convolutional Neural NetworkAbstract
Identifying people at distance is an important task in daily life Because of the increase in terrorism. Biometrics is a better solution to overcome personal identity problems, and this applies to soft biometrics also. Soft biometric are features that can be extracted remotely and do not require cooperation with people. This paper introduces a comparison between human face recognition and human gait recognition using soft biometric features. Nine face attributes and nine gait attributes are taken from a dataset built by researchers. The constructed dataset is composed from (66) videos for (33) persons. Features are extracted using Haar and MediaPipe methods. The extracted features are classified using enhanced convolutional neural network. This work achieves an accuracy of 95.832% in human face recognition and an accuracy of 89.583% in human gait recognition. From the above results it turns out that the proposed method achieved promising results with regard to Recognize people remotely
Downloads
References
Almudhahka, N., Nixon, M., & Hare, J. (2016). Human face identification via comparative soft biometrics. In 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA) (pp. 1-6). IEEE.? https://doi.org/10.1109/ISBA.2016.7477246.
Arca, S., Campadelli, P., & Lanzarotti, R. (2006). A face recognition system based on automatically determined facial fiducial points. Pattern recognition, 39(3), 432-443.? https://doi.org/10.1016/j.patcog.2005.06.015 .
Arigbabu, O. A., Ahmad, S. M. S., Adnan, W. A. W., & Yussof, S. (2015). Integration of multiple soft biometrics for human identification. Pattern Recognition Letters, 68, 278-287.? https://doi.org/10.1016/j.patrec.2015.07.014.
Becerra-Riera, F., Morales-González, A., & Méndez-Vázquez, H. (2019). A survey on facial soft biometrics for video surveillance and forensic applications. Artificial Intelligence Review, 52(2), 1155-1187.? https://doi.org/10.1007/s10462-019-09689-5 .
Chao, H., He, Y., Zhang, J., & Feng, J. (2019, July). Gaitset: Regarding gait as a set for cross-view gait recognition. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 8126-8133).?? https://doi.org/10.1609/aaai.v33i01.33018126.
Dantcheva, A., Velardo, C., D’angelo, A., & Dugelay, J. L. (2011). Bag of soft biometrics for person identification: New trends and challenges. Multimedia Tools and Applications, 51, 739-777.? https://doi.org/10.1007/s11042-010-0635-7.
Dantcheva, A., Velardo, C., D’angelo, A., & Dugelay, J. L. (2011). Bag of soft biometrics for person identification: New trends and challenges. Multimedia Tools and Applications, 51, 739-777. https://doi.org/10.1007/s11042-010-0635-7 .
Elharrouss, O., Almaadeed, N., Al-Maadeed, S., & Bouridane, A. (2021). Gait recognition for person re-identification. The Journal of Supercomputing, 77, 3653-3672.? https://doi.org/10.1007/s11227-020-03409-5 .
Fard, A. P., Abdollahi, H., & Mahoor, M. (2021). ASMNet: A lightweight deep neural network for face alignment and pose estimation. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition (pp. 1521-1530).?? https://doi.org/10.1109/CVPRW53098.2021.00168 .
Garg, R., Arora, A., Singh, S., & Saraswat, S. (2018). Biometric authentication using soft biometric traits. In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC) (pp. 259-264). IEEE.? https://doi.org/10.1109/PDGC.2018.8745766 .
Gharghabi, S., Azari, B., Shamshirdar, F., & Safabakhsh, R. (2016). Improving person recognition by weight adaptation of soft biometrics. In 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE) (pp. 36-40). IEEE.? https://doi.org/10.1109/ICCKE.2016.7802112.
Guo, B. H., Nixon, M. S., & Carter, J. N. (2019). Soft biometric fusion for subject recognition at a distance. IEEE Transactions on Biometrics, Behavior, and Identity Science, 1(4), 292-301.? https://doi.org/10.1109/TBIOM.2019.2943934 .
Hassan, B., & Izquierdo, E. (2022, October). Rsfs: A soft biometrics-based relative support features set for person verification. In Fourteenth International Conference on Digital Image Processing (ICDIP 2022) (Vol. 12342, p. 1234202). SPIE.? https://doi.org/10.1117/12.2644457.
Hassan, B., Sherazi, H. H. R., Ali, M., & Bashir, A. K. (2023). A multi-channel soft biometrics framework for seamless border crossings. EURASIP Journal on Advances in Signal Processing, 2023(1), 65.? https://doi.org/10.1186/s13634-023-01026-x
Jain, A. K., Dass, S. C., & Nandakumar, K. (2004). Can soft biometric traits assist user recognition?. In Biometric technology for human identification (Vol. 5404, pp. 561-572). SPIE.? https://doi.org/10.1117/12.542890.
Kang, W., Lu, Y., Li, D., & Jia, W. (2018). From noise to feature: Exploiting intensity distribution as a novel soft biometric trait for finger vein recognition. IEEE transactions on information forensics and security, 14(4), 858-869.? https://doi.org/10.1109/TIFS.2018.2866330.
Kim, M. G., Moon, H. M., Chung, Y., & Pan, S. B. (2012). A survey and proposed framework on the soft biometrics technique for human identification in intelligent video surveillance system. Journal of Biomedicine and Biotechnology, 2012.? https://doi.org/10.1155/2012/614146.
Minaee, S., Abdolrashidi, A., Su, H., Bennamoun, M., & Zhang, D. (2023). Biometrics recognition using deep learning: A survey. Artificial Intelligence Review, 1-49.? https://doi.org/10.1007/s10462-022-10237-x .
Nithyakani, P., Shanthini, A., & Ponsam, G. (2019). Human gait recognition using deep convolutional neural network. In 2019 3rd international conference on computing and communications technologies (ICCCT) (pp. 208-211). IEEE.? https://doi.org/10.1109/ICCCT2.2019.8824836 .
Parashar, A., Parashar, A., & Shekhawat, R. S. (2022). A robust covariate?invariant gait recognition based on pose features. IET Biometrics, 11(6), 601-613.? https://doi.org/10.1049/bme2.12103.
Prakash, A., Nambiar, A., & Bernardino, A. (2023). Multimodal Adaptive Fusion of Face and Gait Features using Keyless attention based Deep Neural Networks for Human Identification. arXiv preprint arXiv:2303.13814.
Reid, D. A., & Nixon, M. S. (2011). Using comparative human descriptions for soft biometrics. In 2011 International Joint Conference on Biometrics (IJCB) (pp. 1-6). IEEE.? https://doi.org/10.1109/IJCB.2011.6117513
Reid, D. A., & Nixon, M. S. (2011, October). Using comparative human descriptions for soft biometrics. In 2011 International Joint Conference on Biometrics (IJCB) (pp. 1-6). IEEE.? https://doi.org/10.1109/IJCB.2011.6117513 .
Reid, D. A., & Nixon, M. S. (2013). Human identification using facial comparative descriptions. In 2013 International Conference on Biometrics (ICB) (pp. 1-7). IEEE. https://doi.org/10.1109/ICB.2013.6612962.
Reid, D. A., Nixon, M. S., & Stevenage, S. V. (2013). Soft biometrics; human identification using comparative descriptions. IEEE Transactions on pattern analysis and machine intelligence, 36(6), 1216-1228.? https://doi.org/10.1109/TPAMI.2013.219 .
Reid, D. A., Samangooei, S., Chen, C., Nixon, M. S., & Ross, A. (2013). Soft biometrics for surveillance: an overview. Handbook of statistics, 31, 327-352. https://doi.org/10.1016/B978-0-444-53859-8.00013-8.
Romero, M., Gutoski, M., Hattori, L. T., Ribeiro, M., & Lopes, H. S. (2020). Soft biometrics classification in videos using transfer learning and bidirectional long short-term memory networks. Learning and Nonlinear Models, 18(1), 47-59.? https://doi.org/10.21528/lnlm-vol18-no1-art4.
Rudinskaya, E., & Paringer, R. (2020). Face detection accuracy study based on race and gender factor using haar cascades. In CEUR Workshop Proceedings (Vol. 2667, pp. 238-242).?
Sahak, R., Tahir, N. M., Yassin, A. I., & Kamaruzaman, F. (2017). Human gait recognition based on frontal view using kinect features and orthogonal least square selection. In 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 388-393). IEEE.? https://doi.org/10.1109/ISSPIT.2017.8388674 .
Sakib, S., Ahmed, N., Kabir, A. J., & Ahmed, H. (2019). An overview of convolutional neural network: Its architecture and applications.? Preprints, 2018110546. https://www.preprints.org/manuscript/201811.0546/v4 .
Saleem, S., Shiney, J., Priestly Shan, B., & Kumar Mishra, V. (2023). Face recognition using facial features. Materials Today: Proceedings, 80, 3857–3862. https://doi.org/10.1016/j.matpr.2021.07.402 .
Sharif, M., Attique, M., Tahir, M. Z., Yasmim, M., Saba, T., & Tanik, U. J. (2020). A machine learning method with threshold based parallel feature fusion and feature selection for automated gait recognition. Journal of Organizational and End User Computing (JOEUC), 32(2), 67-92.? https://doi.org/10.4018/JOEUC.2020040104 . ?
Sikkandar, H., & Thiyagarajan, R. (2020). Soft biometrics?based face image retrieval using improved grey wolf optimisation. IET Image Processing, 14(3), 451-461.?
Subramanian, B., Olimov, B., Naik, S. M., Kim, S., Park, K. H., & Kim, J. (2022). An integrated mediapipe-optimized GRU model for Indian sign language recognition. Scientific Reports, 12(1), 11964.?? https://doi.org/10.1038/s41598-022-15998-7 .
Sun, Y., Wang, X., & Tang, X. (2013). Deep convolutional network cascade for facial point detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3476-3483).? https://doi.org/10.1109/CVPR.2013.446 .
Terhörst, P., Huber, M., Damer, N., Kirchbuchner, F., & Kuijper, A. (2020). Unsupervised enhancement of soft-biometric privacy with negative face recognition. arXiv preprint arXiv:2002.09181.?
Tome, P., Fierrez, J., Vera-Rodriguez, R., & Nixon, M. S. (2014). Soft biometrics and their application in person recognition at a distance. IEEE Transactions on information forensics and security, 9(3), 464-475.? https://doi.org/10.1109/TIFS.2014.2299975.
Vukadinovic, D., & Pantic, M. (2005). Fully automatic facial feature point detection using gabor feature based boosted classifiers. In 2005 IEEE International Conference on Systems, Man and Cybernetics (Vol. 2, pp. 1692-1698). IEEE.? https://doi.org/10.1109/icsmc.2005.1571392.
Wang, X., & Yan, W. Q. (2020). Human gait recognition based on frame-by-frame gait energy images and convolutional long short-term memory. International journal of neural systems, 30(01), 1950027.?? https://doi.org/10.1142/S0129065719500278.
Zhang, Z., Tran, L., Yin, X., Atoum, Y., Liu, X., Wan, J., & Wang, N. (2019). Gait recognition via disentangled representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4710-4719).? https://doi.org/10.1109/CVPR.2019.00484 .