Intensive Malware Detection Approach based on Data Mining
DOI:
https://doi.org/10.37385/jaets.v5i1.2865Keywords:
Malware detection, Decision tree, Machine learning, Identify malware attackAbstract
Malicious software, sometimes known as malware, is software designed to harm a computer, network, or any of the connected resources. Without the user's knowledge, malware can spread throughout their computer system. Malware is typically disseminated via online connections and mobile devices. While malware has always been a problem in the digital age, its effects have gotten increasingly serious. Traditional malware detection methods seek to locate specific malware samples and families to recognize harmful codes and can be located using traditional signature- and rule-based detection methods. The research focuses on developing malware detectors using data mining techniques. The proposed method outlined below sets itself apart by emphasizing the processing of malware behaviors significantly dependent on aspects. Finding more dependable intelligent detecting techniques is a crucial component of this paper. In order to identify the cluster of the most essential malware features and use decision tree classifiers for malware detection, the study, a common methodology for creating malware detectors based on data mining, is implemented and investigated. Our approach can identify the most significant features of malware that can significantly determine and detect a malware code.
Downloads
References
Abdulhameed, A. A., Al-Azawi, R. J. & Al-Mahdawi, B. M. (2020). Modeling Web Security Analysis Attacks with CySeMoL Tool. Al-Mustansiriyah Journal of Science, 31(3), 101–109. https://doi.org/10.23851/mjs.v31i3.876
Abusitta, A., Li, M. Q. & Fung, B. C. M. (2021). Malware classification and composition analysis: A survey of recent developments. Journal of Information Security and Applications, 59(April), 102828. https://doi.org/10.1016/j.jisa.2021.102828
Ahmed, Y. A., Koçer, B., Huda, S., Saleh Al-rimy, B. A. & Hassan, M. M. (2020). A system call refinement-based enhanced Minimum Redundancy Maximum Relevance method for ransomware early detection. Journal of Network and Computer Applications, 167, 102753. https://doi.org/10.1016/j.jnca.2020.102753
Alagrash, Y., Badih, H. & Rrushi, J. (2020). Malware Detection via Machine Learning and Recognition of Non Stationary Tasks. Proceedings - IEEE 18th International Conference on Dependable, Autonomic and Secure Computing, IEEE 18th International Conference on Pervasive Intelligence and Computing, IEEE 6th International Conference on Cloud and Big Data Computing and IEEE 5th Cybe, 606–611. https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00106
Alagrash, Y., Mohan, N., Gollapalli, S. R. & Rrushi, J. (2019). Machine learning and recognition of user tasks for malware detection. Proceedings - 1st IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications, TPS-ISA 2019, February 2020, 73–81. https://doi.org/10.1109/TPS-ISA48467.2019.00018
Arabo, A., Dijoux, R., Poulain, T. & Chevalier, G. (2020). Detecting ransomware using process behavior analysis. Procedia Computer Science, 168(2019), 289–296. https://doi.org/10.1016/j.procs.2020.02.249
Aslan, O. & Samet, R. (2020). A Comprehensive Review on Malware Detection Approaches. IEEE Access, 8, 6249–6271. https://doi.org/10.1109/ACCESS.2019.2963724
Belaoued, M., Boukellal, A., Koalal, M. A., Derhab, A., Mazouzi, S. & Khan, F. A. (2019). Combined dynamic multi-feature and rule-based behavior for accurate malware detection. International Journal of Distributed Sensor Networks, 15(11). https://doi.org/10.1177/1550147719889907
Choudhary, S. P. & Vidyarthi, M. D. (2015). A Simple Method for Detection of Metamorphic Malware using Dynamic Analysis and Text Mining. Procedia Computer Science, 54, 265–270. https://doi.org/10.1016/j.procs.2015.06.031
Dener, M., Ok, G. & Orman, A. (2022). Malware Detection Using Memory Analysis Data in Big Data Environment. Applied Sciences (Switzerland), 12(17). https://doi.org/10.3390/app12178604
Fasano, F., Martinelli, F., Mercaldo, F. & Santone, A. (2019). Energy consumption metrics for mobile device dynamic malware detection. Procedia Computer Science, 159, 1045–1052. https://doi.org/10.1016/j.procs.2019.09.273
Galal, H. S., Mahdy, Y. B. & Atiea, M. A. (2016). Behavior-based features model for malware detection. Journal of Computer Virology and Hacking Techniques, 12(2), 59–67. https://doi.org/10.1007/s11416-015-0244-0
Gardiner, J. & Nagaraja, S. (2016). On the security of machine learning in malware C&C detection: A survey. ACM Computing Surveys, 49(3), 1–38. https://doi.org/10.1145/3003816
Glanz, L., Amann, S., Eichberg, M., Reif, M., Hermann, B., Lerch, J. & Mezini, M. (2017). CodeMatch: obfuscation won’t conceal your repackaged app. Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2017-Janua, 638–648. https://doi.org/10.1145/3106237.3106305
Hassan, F. O., Samir, N. M. & Hanapi, Z. M. (2023). Impacts of Denial-of-Service Attack on Energy Efficiency Pulse Coupled Oscillator. Baghdad Science Journal, 20, 1817–1824. https://doi.org/10.21123/bsj.2023.7161
Hataba, M., Sherif, A., Mahmoud, M., Abdallah, M. & Alasmary, W. (2022). Security and Privacy Issues in Autonomous Vehicles: A Layer-Based Survey. IEEE Open Journal of the Communications Society, 3(April), 811–829. https://doi.org/10.1109/OJCOMS.2022.3169500
Huang, X., Ma, L., Yang, W. & Zhong, Y. (2021). A Method for Windows Malware Detection Based on Deep Learning. Journal of Signal Processing Systems, 93(2–3), 265–273. https://doi.org/10.1007/s11265-020-01588-1
Hwang, J., Kim, J., Lee, S. & Kim, K. (2020). Two-Stage Ransomware Detection Using Dynamic Analysis and Machine Learning Techniques. Wireless Personal Communications, 112(4), 2597–2609. https://doi.org/10.1007/s11277-020-07166-9
Jerlin, M. A. & Marimuthu, K. (2018). A New Malware Detection System Using Machine Learning Techniques for API Call Sequences. Journal of Applied Security Research, 13(1), 45–62. https://doi.org/10.1080/19361610.2018.1387734
Kim, H., Kim, J., Kim, Y., Kim, I., Kim, K. J. & Kim, H. (2019). Improvement of malware detection and classification using API call sequence alignment and visualization. Cluster Computing, 22, 921–929. https://doi.org/10.1007/s10586-017-1110-2
Komashinskiy, D. & Kotenko, I. (2010). Malware detection by data mining techniques based on positionally dependent features. Proceedings of the 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing, PDP 2010, 617–623. https://doi.org/10.1109/PDP.2010.30
Louk, M. H. L. & Tama, B. A. (2022). Tree-Based Classifier Ensembles for PE Malware Analysis: A Performance Revisit. Algorithms, 15(9), 1–15. https://doi.org/10.3390/a15090332
Muhamed, S. J. (2022). Detection and Prevention WEB-Service for Fraudulent E-Transaction using APRIORI and SVM. Al-Mustansiriyah Journal of Science, 33(4), 72–79. https://doi.org/10.23851/mjs.v33i4.1242
Norouzi, M., Souri, A. & Samad Zamini, M. (2016). A Data Mining Classification Approach for Behavioral Malware Detection. Journal of Computer Networks and Communications, 2016, 20–22. https://doi.org/10.1155/2016/8069672
Pan, Y., Ge, X., Fang, C. & Fan, Y. (2020). A Systematic Literature Review of Android Malware Detection Using Static Analysis. IEEE Access, 8, 116363–116379. https://doi.org/10.1109/ACCESS.2020.3002842
Qin, X. C., Dong, C. Y., Wang, F. & Qu, X. Y. (2017). Static and dynamic analyses of isogeometric curvilinearly stiffened plates. Applied Mathematical Modelling, 45, 336–364. https://doi.org/10.1016/j.apm.2016.12.035
Ranveer, S. & Hiray, S. (2015). Comparative Analysis of Feature Extraction Methods of Malware Detection. International Journal of Computer Applications, 120(5), 1–7. https://doi.org/10.5120/21220-3960
Singh, J. & Singh, J. (2020). Detection of malicious software by analyzing the behavioral artifacts using machine learning algorithms. Information and Software Technology, 121, 106273. https://doi.org/10.1016/j.infsof.2020.106273
Smith, D., Khorsandroo, S. & Roy, K. (2023a). Supervised and Unsupervised Learning Techniques Utilizing Malware Datasets. 2023 IEEE 2nd International Conference on AI in Cybersecurity, ICAIC 2023. https://doi.org/10.1109/ICAIC57335.2023.10044169
Smith, D., Khorsandroo, S., & Roy, K. (2023b). Leveraging feature selection to improve the accuracy for malware detection. In Research Square. https://doi.org/10.21203/rs.3.rs-3045391/v1
Souri, A. & Hosseini, R. (2018). A state-of-the-art survey of malware detection approaches using data mining techniques. Human-Centric Computing and Information Sciences, 8(1). https://doi.org/10.1186/s13673-018-0125-x
Talukder, M. A., Hasan, K. F., Islam, M. M., Uddin, M. A., Akhter, A., Yousuf, M. A., Alharbi, F. & Moni, M. A. (2023). A dependable hybrid machine learning model for network intrusion detection. Journal of Information Security and Applications, 72. https://doi.org/10.1016/j.jisa.2022.103405