Fuzzy Genetic Particle Swarm Optimization Convolution Neural Network Based On Oral Cancer Identification System
DOI:
https://doi.org/10.37385/jaets.v5i1.2874Keywords:
Deep Learning, BeePCNN, FGPSOCNN, Oral CancerAbstract
Oral cancer is the eighth most common type of cancer in the world. Every year, 130,000 people in India die from mouth cancer. Getting a diagnosis from a clinical exam by skilled doctors and a biopsy takes time. When a problem is found early, it is always easier to treat. The primary goal of this work is to recognise disease-affected oral regions in a given oral image and classify the oral cancer disorder. This study employs unique Deep Learning algorithms to detect the location of disease-affected oral areas. This work employs the most effective feature extraction techniques, including appearance and patter-based features. Following feature extraction, the Bee Pulse Couple Neural Network (BeePCNN) algorithm is used to choose the best feature. Finally, Deep Learning is used to classify these attributes. An innovative FGPSOCNN reduces the computational complexity of CNN. On an additional real-time data set from Arthi Scan Hospital, a secondary evaluation is conducted. The experimental results indicate that the innovative FGPSOCNN performs better than existing methods.
Downloads
References
Abati, S., Bramati, C., Bondi, S., Lissoni, A., & Trimarchi, M. (2020). Oral cancer and precancer: a narrative review on the relevance of early diagnosis. International Journal of Environmental Research and Public Health, 17(24), 9160. https://doi.org/10.3390/ijerph17249160
Alhazmi, A., Alhazmi, Y., Makrami, A., Masmali, A., Salawi, N., Masmali, K., & Patil, S. (2021). Application of artificial intelligence and machine learning for prediction of oral cancer risk. Journal of Oral Pathology & Medicine, 50(5), 444-450. https://doi.org/10.1111/jop.13157
Amin, I., Zamir, H., & Khan, F. F. (2021). Histopathological image analysis for oral squamous cell carcinoma classification using concatenated deep learning models. medRxiv, 2021-05. https://doi.org/10.1101/2021.05.06.21256741
Ariji, Y., Sugita, Y., Nagao, T., Nakayama, A., Fukuda, M., Kise, Y., Nozawa, M., Nishiyama, M., Katumata, A., & Ariji, E. (2020). CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification. Oral Radiology, 36, 148-155. https://doi.org/10.1007/s11282-019-00391-4
Bansal, K., Batla, R.K., Kumar, Y., & Shafi, J. (2022). Artificial intelligence techniques in health informatics for oral cancer detection. In Connected e-Health: Integrated IoT and Cloud Computing, 255-279. Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-97929-4_11
Bhandari, B., Alsadoon, A., Prasad, P. W. C., Abdullah, S., & Haddad, S. (2020). Deep learning neural network for texture feature extraction in oral cancer: Enhanced loss function. Multimedia Tools and Applications, 79(37-38), 27867-27890. Advance online publication. https://doi.org/10.1007/s11042-020-09384-6
Bhandari, B., Alsadoon, A., Prasad, P.W.C., Abdullah, S., & Haddad, S. (2020). Deep learning neural network for texture feature extraction in oral cancer: Enhanced loss function. Multimedia Tools and Applications, 79, 27867-27890.
Capote-Moreno, A., Brabyn, P., Muñoz-Guerra, M.F., Sastre-Pérez, J., Escorial-Hernandez, V., Rodríguez-Campo, F.J., García, T., & Naval-Gías, L. (2020). Oral squamous cell carcinoma: epidemiological study and risk factor assessment based on a 39-year series. International Journal of Oral and Maxillofacial Surgery, 49(12), 1525-1534. https://doi.org/10.1016/j.ijom.2020.03.009
Chamoli, A., Gosavi, A.S., Shirwadkar, U.P., Wangdale, K.V., Behera, S.K., Kurrey, N.K., Kalia, K., & Mandoli, A. (2021). Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncology, 121, 105451. https://doi.org/10.1016/j.oraloncology. 2021.105451
Chu, C.S., Lee, N.P., Adeoye, J., Thomson, P., & Choi, S.W. (2020). Machine learning and treatment outcome prediction for oral cancer. Journal of Oral Pathology & Medicine, 49(10), 977-985. https://doi.org/10.1111/jop.13089
Das, D. K., Bose, S., Maiti, A. K., Mitra, B., Mukherjee, G., & Dutta, P. K. (2018). Automatic identification of clinically relevant regions from oral tissue histological images for oral squamous cell carcinoma diagnosis. Tissue and Cell, 53, 111–119. https://doi.org/10.1016/j.tice.2018.06.004
Das, N., Hussain, E., & Mahanta, L.B. (2020). Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network. Neural Networks, 128, 47-60. https://doi.org/10.1016/j.neunet.2020.05.003
Deif, M. A., Attar, H., Amer, A., Issa, H., Khosravi, M. R., & Solyman, A. A. A. (2022). A new feature selection method based on a hybrid approach for colorectal cancer histology classification. Wireless Communications and Mobile Computing, 2022, Article ID 7614264, 14 pages. https://doi.org/10.1002/jmri.27599
Deshmukh, V., & Shekar, K. (2021). Oral squamous cell carcinoma: Diagnosis and treatment planning. Oral and maxillofacial surgery for the clinician, 1853-1867. https://doi.org/10.3390/diagnostics13071353
Dixit, S., Kumar, A., & Srinivasan, K. (2023). A Current Review of Machine Learning and Deep Learning Models in Oral Cancer Diagnosis: Recent Technologies, Open Challenges, and Future Research Directions. Diagnostics, 13(7), 1353.
El-Hasnony, I.M., Elzeki, O.M., Alshehri, A., & Salem, H. (2022). Multi-label active learning-based machine learning model for heart disease prediction. Sensors, 22(3), 1184. https://doi.org/10.3390/s22031184
Ezhilarasan, D., Lakshmi, T., Subha, M., Deepak Nallasamy, V., & Raghunandhakumar, S. (2022). The ambiguous role of sirtuins in head and neck squamous cell carcinoma. Oral Diseases, 28(3), 559-567. https://doi.org/10.1111/odi.13798
Folmsbee, J., Liu, X., Brandwein-Weber, M., & Doyle, S. (2018, April). Active deep learning: Improved training efficiency of convolutional neural networks for tissue classification in oral cavity cancer. In 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) (pp. 770-773). https://doi.org/10.1109/ISBI.2018.8363686
Fukumoto, C., Uchida, D., & Kawamata, H. (2022). Diversity of the origin of cancer stem cells in oral squamous cell carcinoma and its clinical implications. Cancers, 14(15), 3588. https://doi.org/10.3390%2Fcancers14153588
Huang, C., Zhang, G., Chen, S., & de Albuquerque, V.H.C. (2022). An intelligent multisampling tensor model for oral cancer classification. IEEE Transactions on Industrial Informatics, 18(11), 7853-7861. https://doi.org/10.1109/TII.2022.3149939
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685-695. https://doi.org/10.1007/s12525-021-00475-2
Jubair, F., Al-karadsheh, O., Malamos, D., Al Mahdi, S., Saad, Y., & Hassona, Y. (2022). A novel lightweight deep convolutional neural network for early detection of oral cancer. Oral Diseases, 28(4), 1123–1130. https://doi.org/10.1111/odi.13825
Ketabat, F., Pundir, M., Mohabatpour, F., Lobanova, L., Koutsopoulos, S., Hadjiiski, L., Chen, X., Papagerakis, P., & Papagerakis, S. (2019). Controlled drug delivery systems for oral cancer treatment—current status and future perspectives. Pharmaceutics, 11(7), 302. https://doi.org/10.3390/pharmaceutics11070302
Khanagar, S.B., Al-Ehaideb, A., Maganur, P.C., Vishwanathaiah, S., Patil, S., Baeshen, H.A., Sarode, S.C., & Bhandi, S. (2021). Developments, application, and performance of artificial intelligence in dentistry–A systematic review. Journal of dental sciences, 16(1), 508-522. https://doi.org/10.1016/j.jds.2020.06.019
Kirubabai, M.P., & Arumugam, G. (2021). Deep learning classification method to detect and diagnose the cancer regions in oral MRI images. Med. Leg. Update, 21, 462-468. https://doi.org/10.37506/mlu.v21i1.2353
Mercadante, V., Scarpa, E., De Matteis, V., Rizzello, L., & Poma, A. (2021). Engineering polymeric nanosystems against oral diseases. Molecules, 26(8), 2229. https://doi.org/10.3390/molecules26082229
Musulin, J., Štifani?, D., Zulijani, A., ?abov, T., Dekani?, A., & Car, Z. (2021). An enhanced histopathology analysis: An AI-based system for multiclass grading of oral squamous cell carcinoma and segmenting of epithelial and stromal tissue. Cancers, 13(8), 1784. https://doi.org/10.3390/cancers13081784
Myriam, H., Abdelhamid, A.A., El-Kenawy, E.S.M., Ibrahim, A., Eid, M.M., Jamjoom, M.M., & Khafaga, D.S. (2023). Advanced meta-heuristic algorithm based on Particle Swarm and Al-biruni Earth Radius optimization methods for oral cancer detection. IEEE Access, 11, 23681-23700. http://dx.doi.org/10.1109/ACCESS.2023.3253430
Panigrahi, S., Nanda, B.S., & Swarnkar, T. (2022). Comparative analysis of machine learning algorithms for histopathological images of oral cancer. In Advances in Distributed Computing and Machine Learning: Proceedings of ICADCML 2021 (pp. 318-327). Springer Singapore. http://dx.doi.org/10.1109/ICCPCT58313.2023.10244890
Parkavi, A., Tiriyar, Y., Borthakur, P.J., Patil, P., & Haleem, M.B. (2023, August). Deep Learning Techniques for the Detection and Classification of Oral Cancer Using Histopathological Images. In 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 1625-1630). IEEE.
Patibandla, S.K., & Peram, S.R. (2023). CT Image Precise Denoising Model with Edge Based Segmentation with Labeled Pixel Extraction Using CNN Based Feature Extraction for Oral Cancer Detection. Traitement du Signal, 40(3), 1297. https://doi.org/10.18280/ts.400349
Rahman, A.U., Alqahtani, A., Aldhafferi, N., Nasir, M.U., Khan, M.F., Khan, M.A., & Mosavi, A. (2022). Histopathologic oral cancer prediction using oral squamous cell carcinoma biopsy empowered with transfer learning. Sensors, 22(10), 3833. https://doi.org/10.3390%2Fs22103833
Rao, R.S., Shivanna, D.B., Lakshminarayana, S., Mahadevpur, K.S., Alhazmi, Y.A., Bakri, M.M.H., Alharbi, H.S., Alzahrani, K.J., Alsharif, K.F., Banjer, H.J., & Alnfiai, M.M. (2022). Ensemble Deep-Learning-Based Prognostic and Prediction for Recurrence of Sporadic Odontogenic Keratocysts on Hematoxylin and Eosin Stained Pathological Images of Incisional Biopsies. Journal of Personalized Medicine, 12(8), 1220. https://doi.org/10.3390/jpm12081220
Shamala, A., Halboub, E., Al-Maweri, S.A., Al-Sharani, H., Al-Hadi, M., Ali, R., Laradhi, H., Murshed, H., Mohammed, M.M., & Ali, K. (2023). Oral cancer knowledge, attitudes, and practices among senior dental students in Yemen: a multi-institution study. BMC Oral Health, 23(1), 435. http://dx.doi.org/10.1186/s12903-023-03149-x
Wahid, K.A., Ahmed, S., He, R., van Dijk, L.V., Teuwen, J., McDonald, B.A., Salama, V., Mohamed, A.S., Salzillo, T., Dede, C., & Taku, N. (2022). Evaluation of deep learning-based multiparametric MRI oropharyngeal primary tumor auto-segmentation and investigation of input channel effects: Results from a prospective imaging registry. Clinical and translational radiation oncology, 32, 6-14. https://doi.org/10.1016/j.ctro.2021.10.003
Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S., & Jantana, P. (2021). Automatic classification and detection of oral cancer in photographic images using deep learning algorithms. Journal of Oral Pathology & Medicine, 50(9), 911-918. https://doi.org/10.1111/jop.13227
Welikala, R., Remagnino, P., Lim, J., Chan, C. S., Rajendran, S., George, T., Zain, R., Jayasinghe, R., Rimal, J., Kerr, A., Amtha, R., Patil, K., Tilakaratne, W., Gibson, J., Cheong, S., & Barman, S. (2020). Automated Detection and Classification of Oral Lesions Using Deep Learning for Early Detection of Oral Cancer. IEEE Access, 8, 1-1. http://dx.doi.org/10.1109/ACCESS.2020.3010180
Zhou, Y., Tang, Y., Luo, J., Yang, Y., Zang, H., Ma, J., Fan, S. and Wen, Q., (2023). High expression of HSP60 and survivin predicts poor prognosis for oral squamous cell carcinoma patients. BMC Oral Health, 23(1), p.629. https://doi.org/10.1186%2Fs12903-023-03311-5