Extraction of Green Grass Jelly Leaves as An Alternative Biopolymer in Polymer Flooding
DOI:
https://doi.org/10.37385/jaets.v5i1.3019Keywords:
Green Jelly Leave, Sweep Efficiency, Pectin, BiopolymerAbstract
Biopolymer from Green Grass Jelly Leaves attracts attention due to its friendlier environmental profile and cost-effectiveness in providing raw materials. This research aims to explore the potential of biopolymers from Green Grass Jelly Leaves as an alternative to synthetic polymers in an effort to increase oil recovery involving sequential pretreatment, extraction, and characterization stages to obtain essential pectin compounds. This experiment centers on a biopolymer sourced from Green Grass Jelly Leaves, involving sequential steps of pretreatment, extraction, and characterization to obtain essential pectin compounds. Characterization employed scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The recorded peak viscosity for Green Grass Jelly Leaves biopolymer was 2.04 cp at 3000 ppm concentration, contrasting with pectin's 1.98 cp viscosity. In comparison, industrial biopolymer Xanthan Gum displayed significantly higher viscosity at 95.01 cp for 3000 ppm concentration. Thermal stability assessment under reservoir conditions (30°C and 60°C) demonstrated that Green Grass Jelly Leaves biopolymer pectin exhibited peak viscosities of 55.29 cP and 51.77 cP at 3000 ppm concentration, respectively. These results show that the comparison between biopolymer and synthetic polymer is not too far and there is an increase in viscosity as the concentration increases, which can increase sweep efficiency.
Downloads
References
Abid, M., Renard, C. M. G. C., Watrelot, A. A., Fendri, I., Attia, H., & Ayadi, M. A. (2016). Yield and composition of pectin extracted from Tunisian pomegranate peel. International Journal of Biological Macromolecules, 93, 186–194. https://doi.org/10.1016/J.IJBIOMAC.2016.08.033
Abidin, A Zainal, Susanto, G., Sastra, N. M. T., & Puspasari, T. (2012). Sintesis dan karakterisasi Polimer Superabsorban dari Akrilamida. Jurnal Teknik Kimia Indonesia, 11(2), 87–93.
Abidin, A.Z., Puspasari, T., & Nugroho, W. A. (2012). Polymers for Enhanced Oil Recovery Technology. Procedia Chemistry, 4, 11–16. https://doi.org/10.1016/J.PROCHE.2012.06.002
Abrahamsen, A. (2012). Applying Chemical EOR on the Norne Field C-Segment (Master Thesis). Norwegian University of Science and Technology, Trondheim.
Afdhol, M. K., Abdurrahman, M., Hidayat, F., Chong, F. K., & Mohd Zaid, H. F. (2019). Review of Solvents Based on Biomass for Mitigation of Wax Paraffin in Indonesian Oilfield. Applied Sciences, 9(24), 5499. https://doi.org/10.3390/app9245499
Afdhol, M K, Hidayat, F., Abdurrahman, M., Husna, U. Z., Sari, N. P., & Wijaya, R. K. (2020). A Laboratory Scale Synthesis of Ethanol from Agricultural Waste as Bio-based Solvent for Waxy-Paraffinic Crude Oil Mitigation. IOP Conference Series: Materials Science and Engineering, 854, 012017. https://doi.org/10.1088/1757-899X/854/1/012017
Afdhol, M. K., Setiawan, C., Erfando, T., Adam, F., Saputra, I. D., & Perdana, R. H. (2023). Pectin Extraction From Orange Peel With Microwave-Assisted Extraction Method as an Alternative Material in Polymer Injection. IOP Conference Series: Earth and Environmental Science, 1187(1), 012013. IOP Publishing. https://doi.org/10.1088/1755-1315/1187/1/012013
Afdhol, Muhammad Khairul, Erfando, T., Hidayat, F., Hasibuan, R., Hasibuan, M. Y., & Siregar, C. P. (2020). Application of Pineapple Skin Waste as a Source of Biosolvent for Use as Wax Inhibitor. Journal of Earth Energy Engineering, 9(2), 102–111.
Agi, A., Junin, R., Abdullah, M. O., Jaafar, M. Z., Arsad, A., Wan Sulaiman, W. R., … Azli, N. B. (2020). Application of polymeric nanofluid in enhancing oil recovery at reservoir condition. Journal of Petroleum Science and Engineering, 194, 107476. https://doi.org/10.1016/J.PETROL.2020.107476
Brown, V. A., Lozano, J. E., & Genovese, D. B. (2014). Pectin extraction from quince ( Cydonia oblonga ) pomace applying alternative methods: Effect of process variables and preliminary optimization. Food Science and Technology International, 20(2), 83–98. https://doi.org/10.1177/1082013212469616
Carraher Jr., C. E. (2007). Seymour/Carraher’s Polymer Chemistry (7th ed.). CRC Press. https://doi.org/10.1201/9781420051032
Ceballos, H., Pérez, J. C., Joaqui Barandica, O., Lenis, J. I., Morante, N., Calle, F., … Hershey, C. H. (2016). Cassava Breeding I: The Value of Breeding Value. Frontiers in Plant Science, 7. Retrieved from https://www.frontiersin.org/articles/10.3389/fpls.2016.01227
Chan, S. Y., Choo, W. S., Young, D. J., & Loh, X. J. (2017). Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydrate Polymers, 161, 118–139. https://doi.org/10.1016/J.CARBPOL.2016.12.033
Clark, E. J. (1985). Molecular and microstructural factors affecting mechanical properties of polymeric cover plate materials: , National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/https://doi.org/10.6028/NBS.IR.85-3197
da Costa, M. P. M., de Mello Ferreira, I. L., & de Macedo Cruz, M. T. (2016). New polyelectrolyte complex from pectin/chitosan and montmorillonite clay. Carbohydrate Polymers, 146, 123–130. https://doi.org/10.1016/j.carbpol.2016.03.025
de Moura, M. R. V., & Moreno, R. B. Z. L. (2019). Concentration, Brine Salinity and Temperature effects on Xanthan Gum Solutions Rheology. Applied Rheology, 29(1), 69–79. https://doi.org/10.1515/arh-2019-0007
Diop, C. I. K., Li, H. L., Xie, B. J., & Shi, J. (2011). Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates. Food Chemistry, 126(4), 1662–1669. https://doi.org/10.1016/j.foodchem.2010.12.050
Elsyana, V., & Alvita, L. (2022). Characterization of Pectin from Cincau (Premna Oblongifolia Merr.) Leaves. IOP Conference Series: Earth and Environmental Science, 1012(1), 012050. https://doi.org/10.1088/1755-1315/1012/1/012050
Erfando, T., & Khariszma, R. (2023). Sensitivity Study of The Effect Polymer Flooding Parameters to Improve Oil Recovery Using X-Gradient Boosting Algorithm. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 873–884. https://doi.org/10.37385/JAETS.V4I2.1871
Fadly, F., Afdhol, M. K., Hidayat, F., Yuliusman, Y., Nordin, R. M., Hasibuan, R., & Hakim, F. M. (2022). Formulation of Bioethanol from Pineaple Skin Waste and Applicated as Wax Inhibitors. IOP Conference Series: Earth and Environmental Science, 1034(1). Institute of Physics. https://doi.org/10.1088/1755-1315/1034/1/012026
Fauziah, S., Draman, S., Daik, R., & Mohd, N. (2016). ECO-FRIENDLY EXTRACTION AND CHARACTERIZATION OF CELLULOSE FROM LIGNOCELLULOSOIC FIBER. ARPN Journal of Engineering and Applied Sciences, 11(16). Retrieved from www.arpnjournals.com
Fink, J. K. (2015). Water-Based Chemicals and Technology for Drilling, Completion, and Workover Fluids. Elsevier. https://doi.org/10.1016/C2014-0-02960-7
Fratesi, S. E., Lynch, F. L., Kirkland, B. L., & Brown, L. R. (2004). Effects of SEM Preparation Techniques on the Appearance of Bacteria and Biofilms in the Carter Sandstone. Journal of Sedimentary Research, 74(6), 858–867. https://doi.org/10.1306/042604740858
Friese, M. A., Banerjee, S., & Mangin, P. J. (2020). FT-IR Spectroscopy. In Surface Analysis of Paper (1st ed., pp. 119–141). CRC Press. https://doi.org/10.1201/9780429279997-6
Fu, X., Qin, F., Liu, T., & Zhang, X. (2022). Enhanced Oil Recovery Performance and Solution Properties of Hydrophobic Associative Xanthan Gum. Energy and Fuels, 36(1), 181–194. https://doi.org/10.1021/ACS.ENERGYFUELS.1C02941/ASSET/IMAGES/MEDIUM/EF1C02941_0018.GIF
Gajah, G., Susantry, Arifin, I., Ramas, E. W., & Hidayat, R. (2019). Indonesian Local Biopolymer for Enhanced Oil Recovery from Seeds of Kluwih. 43rd Annual Convention & Exhibition. Indonesian Petroleum Association.
García-Ochoa, F., Santos, V. E., Casas, J. A., & Gómez, E. (2000). Xanthan gum: production, recovery, and properties. Biotechnology Advances, 18(7), 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1
GENERAL STANDARD FOR FOOD ADDITIVES. (1995). Retrieved from http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-additives/en/.
Günter, E. A., & Popeyko, O. V. (2016). Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery. Carbohydrate Polymers, 147, 490–499. https://doi.org/10.1016/J.CARBPOL.2016.04.026
Holzwarth, G. (1978). Molecular weight of xanthan polysaccharide. Carbohydrate Research, 66(1), 173–186. https://doi.org/10.1016/S0008-6215(00)83250-4
Huang, Y., Li, F., Bao, G., Wang, W., & Wang, H. (2020). Estimation of Kinematic Viscosity of Biodiesel Fuels from Fatty Acid Methyl Ester Composition and Temperature. Journal of Chemical and Engineering Data, 65(5), 2476–2485. https://doi.org/10.1021/ACS.JCED.9B01127/ASSET/IMAGES/MEDIUM/JE9B01127_0005.GIF
Jacob, J., & Gopi, S. (2021). Isolation and physicochemical characterization of biopolymers. In Biopolymers and their Industrial Applications (pp. 45–79). Elsevier. https://doi.org/10.1016/B978-0-12-819240-5.00003-1
Khalid, I., Lestari, F. A., Afdhol, M. K., & Hidayat, F. (2020). POTENSI BIOPOLIMER DARI EKSTRAKSI NANOSELULOSA DAUN KAPAS SEBAGAI AGEN PENINGKATAN VISKOSITAS PADA INJEKSI POLIMER. PETRO: Jurnal Ilmiah Teknik Perminyakan, 9(4), 146–153. https://doi.org/10.25105/PETRO.V9I4.8162
Khuu, H., Yee, N., Butterfield, A., Meiser, M., Wei, T., Gutsol, A., & Moir, M. (2019). Improving ASTM D445, the Manual Viscosity Test, by Video Recording. Journal of Testing and Evaluation, 47(1), 310–323. https://doi.org/10.1520/JTE20170341
Ku, B. K., & Maynard, A. D. (2005). Comparing aerosol surface-area measurements of monodisperse ultrafine silver agglomerates by mobility analysis, transmission electron microscopy and diffusion charging. Journal of Aerosol Science, 36(9), 1108–1124. https://doi.org/10.1016/J.JAEROSCI.2004.12.003
Lake, L. W., Johns, R., Rossen, B., & Pope, G. (2014). Fundamentals of Enhanced Oil Recovery. Society of Petroleum Engineers. Retrieved from https://store.spe.org/Fundamentals-of-Enhanced-Oil-Recovery-P921.aspx
Lestari, F. A., Afdhol, M. K., Hidayat, F., & Erfando, T. (2020). Biopolimer dari Bahan Organik sebagai Biopolimer pada Metode EOR. Lembaran Publikasi Minyak Dan Gas Bumi, 54(3), 149–157. https://doi.org/https://doi.org/10.29017/LPMGB.54.3.568
Li, X., Zhang, F., & Liu, G. (2021). Review on polymer flooding technology. The Fifth International Conference on Energy Engineering and Environmental Protection 17-19 November 2020, Xiamen, China, IOP Conference Series: Earth and Environmental Science, 675(1), 012199. Xiamen: IOP Publishing. https://doi.org/10.1088/1755-1315/675/1/012199
Liang, S., Li, G., & Tian, R. (2016). Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. Journal of Materials Science, 51(7), 3513–3524. https://doi.org/10.1007/S10853-015-9671-Z/METRICS
Lupi, F. R., Gabriele, D., Seta, L., Baldino, N., de Cindio, B., & Marino, R. (2015). Rheological investigation of pectin-based emulsion gels for pharmaceutical and cosmetic uses. Rheologica Acta, 54(1), 41–52. https://doi.org/10.1007/S00397-014-0809-8/METRICS
Mady, M. F., Bayat, P., & Kelland, M. A. (2020). Environmentally Friendly Phosphonated Polyetheramine Scale Inhibitors - Excellent Calcium Compatibility for Oilfield Applications. Industrial and Engineering Chemistry Research, 59(21), 9808–9818. https://doi.org/10.1021/ACS.IECR.0C01636/SUPPL_FILE/IE0C01636_SI_001.PDF
Martau, G. A., Mihai, M., & Vodnar, D. C. (2019). The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector—Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers, 11(11), 1837. https://doi.org/10.3390/POLYM11111837
Maurya, N. K., & Mandal, A. (2016). Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery. Petroleum Science and Technology, 34(5), 429–436. https://doi.org/10.1080/10916466.2016.1145693
Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266–277. https://doi.org/10.1016/J.PBI.2008.03.006
Mousavi, S. B., Zeinali Heris, S., & Estellé, P. (2021). Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: An experimental study. Fuel, 293, 120481. https://doi.org/10.1016/J.FUEL.2021.120481
Muhammed, N. S., Haq, M. B., Al-Shehri, D., Rahaman, M. M., Keshavarz, A., & Zakir Hossain, S. M. (2020). Comparative Study of Green and Synthetic Polymers for Enhanced Oil Recovery. Polymers, 12(10), 2429. https://doi.org/10.3390/POLYM12102429
Navaie, F., Esmaeilnezhad, E., & Jin Choi, H. (2022). Xanthan gum-added natural surfactant solution of Chuback: A green and clean technique for enhanced oil recovery. Journal of Molecular Liquids, 354, 118909. https://doi.org/10.1016/j.molliq.2022.118909
Nnyigide, O. S., & Hyun, K. (2023). Charge-induced low-temperature gelation of mixed proteins and the effect of pH on the gelation: A spectroscopic, rheological and coarse-grained molecular dynamics study. Colloids and Surfaces B: Biointerfaces, 230, 113527. https://doi.org/10.1016/j.colsurfb.2023.113527
Nsengiyumva, E. M., & Alexandridis, P. (2022). Xanthan gum in aqueous solutions: Fundamentals and applications. International Journal of Biological Macromolecules, 216, 583–604. https://doi.org/10.1016/J.IJBIOMAC.2022.06.189
Obuebite, A. A., Onyekonwu, M. O., Akaranta, O. ., & Uzoho, C. U. (2018). Effect of Salinity and Divalent Ions on Local Bio Polymers. The SPE Nigeria Annual International Conference and Exhibition. Lagos, Nigeria: SPE. https://doi.org/10.2118/193450-MS
Oviatt, H. W., & Brant, D. A. (1994). Viscoelastic Behavior of Thermally Treated Aqueous Xanthan Solutions in the Semidilute Concentration Regime. Macromolecules, 27(9), 2402–2408. https://doi.org/10.1021/MA00087A007/ASSET/MA00087A007.FP.PNG_V03
Paharia, A., Yadav, A. K., Rai, G., Jain, S. K., Pancholi, S. S., & Agrawal, G. P. (2007). Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS PharmSciTech, 8(1), E87–E93. https://doi.org/10.1208/pt0801012
Patel, J., Maji, B., Moorthy, N. S. H. N., & Maiti, S. (2020). Xanthan gum derivatives: review of synthesis, properties and diverse applications. RSC Advances, 10(45), 27103–27136. https://doi.org/10.1039/D0RA04366D
Perdana, R. H., Afdhol, M. K., Erfando, T., Setiawan, C., Saputra, I. D., & Adam, F. (2023). Biopolymer manufacturing from pectin extraction of jackfruit waste to increase oil production in EOR. IOP Conference Series: Earth and Environmental Science, 1187(1), 012003. IOP Publishing. https://doi.org/10.1088/1755-1315/1187/1/012003
Perkins, W. D. (2020). Sample Handling in Infrared Spectroscopy — An Overview. In Practical Sampling Techniques for INFRARED ANALYSIS (pp. 11–53). CRC Press. https://doi.org/10.1201/9781003068044-2
Pu, W., Shen, C., Wei, B., Yang, Y., & Li, Y. (2018). A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. Journal of Industrial and Engineering Chemistry, 61, 1–11. https://doi.org/10.1016/J.JIEC.2017.12.034
Rascón-Chu, A., Martínez-López, A. L., Carvajal-Millán, E., Ponce de León-Renova, N. E., Márquez-Escalante, J. A., & Romo-Chacón, A. (2009). Pectin from low quality ‘Golden Delicious’ apples: Composition and gelling capability. Food Chemistry, 116(1), 101–103. https://doi.org/10.1016/J.FOODCHEM.2009.02.016
Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929–967. https://doi.org/10.1016/S0031-9422(01)00113-3
Said, M., Haq, B., Al Shehri, D., Rahman, M. M., Muhammed, N. S., & Mahmoud, M. (2021). Modification of Xanthan Gum for a High-Temperature and High-Salinity Reservoir. Polymers, 13(23), 4212. https://doi.org/10.3390/polym13234212
Sentanuhady, J., Majid, A. I., Prashida, W., Saputro, W., Gunawan, N. P., Raditya, T. Y., & Muflikhun, M. A. (2020). Analysis of the Effect of Biodiesel B20 and B100 on the Degradation of Viscosity and Total Base Number of Lubricating Oil in Diesel Engines with Long-Term Operation Using ASTM D2896 and ASTM D445-06 Methods. TEKNIK, 41(3), 269–274. https://doi.org/10.14710/teknik.v41i3.32515
Siew, C. K., Williams, P. A., Cui, S. W., & Wang, Q. (2008). Characterization of the Surface-Active Components of Sugar Beet Pectin and the Hydrodynamic Thickness of the Adsorbed Pectin Layer. Journal of Agricultural and Food Chemistry, 56(17), 8111–8120. https://doi.org/10.1021/JF801588A
Sungthongjeen, S., Pitaksuteepong, T., Somsiri, A., & Sriamornsak, P. (1999). Studies on Pectins as Potential Hydrogel Matrices for Controlled-Release Drug Delivery. Drug Development and Industrial Pharmacy, 25(12), 1271–1276. https://doi.org/10.1081/DDC-100102298
Ul-Hamid, A. (2018). A Beginners’ Guide to Scanning Electron Microscopy. In A Beginners’ Guide to Scanning Electron Microscopy (1st ed.). Springer International Publishing. https://doi.org/10.1007/978-3-319-98482-7
Yapo, B. M., Robert, C., Etienne, I., Wathelet, B., & Paquot, M. (2007). Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100(4), 1356–1364. https://doi.org/10.1016/J.FOODCHEM.2005.12.012
Yuliarti, O., & Mardyiah Binte Othman, R. (2018). Temperature dependence of acid and calcium-induced low-methoxyl pectin gel extracted from Cyclea barbata Miers. Food Hydrocolloids, 81, 300–311. https://doi.org/10.1016/J.FOODHYD.2018.03.004
Zhao, L., Guanhua, N., Hui, W., Qian, S., Gang, W., Bingyou, J., & Chao, Z. (2020). Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy. Fuel, 272, 117705. https://doi.org/10.1016/J.FUEL.2020.117705