Triglycerides of Crude Palm Oil to Biokerosene: Studies on Electrolysis and Electromagnetic Effect

Authors

  • Sri Rizki Putri Primandari Universitas Negeri Padang
  • Krismadinata Krismadinata Universitas Negeri Padang
  • Dori Yuvenda Universitas Negeri Padang
  • Remon Lapisa Universitas Negeri Padang
  • Andre Kurniawan Universitas Negeri Padang
  • Mulianti Mulianti Universitas Negeri Padang
  • Muhammad Djoni Bustan Universitas Sriwijaya
  • Sri Haryati Universitas Sriwijaya
  • Gusni Sushanti Hiroshima University
  • Tarig Elshaarani Sudan Atomic Energy Commission
  • Yus Donald Chaniago Ulsan National Institute of Science and Technology

DOI:

https://doi.org/10.37385/jaets.v5i1.3127

Keywords:

Biofuel, Energy Conversion, Chemical Conversion, Technology

Abstract

Crude Palm Oil (CPO) is a potential feedstock for biokerosene. However, it is problematic when used directly because it is gummy, has a high viscosity and is degradable. Various conversion processes have been conducted that directly convert CPO into biokerosene, but it requires high temperature and pressure. Therefore, as a novelty, this study aims to develop the technology for converting triglycerides into biokerosene under relatively low operating conditions and producing similar petroleum kerosene by electrolysis-assisted and electromagnetic induction. In this study, the conversion technology process was conducted in three steps (i) converting triglycerides to Free Fatty Acids (FFA), (ii) converting FFA to alkanes, and (iii) converting alkanes to biokerosene. Step (ii) is assisted by the electrolysis process, meanwhile, step (iii) is assisted by electromagnetic irradiation. The finding showed that electrolysis obtained 73.47% yield of alkanes and electromagnetic irradiation obtained 78.02% yield of biokerosene.  Biokerosene is almost close to kerosene-based petroleum in terms of colour Saybolt, flash point and Net Heating Value. The findings of this study may provide an alternate technology approach for biokerosene synthesis and solution kerosene scarcity.

Downloads

Download data is not yet available.

References

Abdel-Rehim, A. A. (2019). The influence of electromagnetic field on the performance and operation of a PEM fuel cell stack subjected to a relatively low electromagnetic field intensity. Energy Conversion and Management, 198, 111906. https://doi.org/10.1016/J.ENCONMAN.2019.111906

Afisna, L. P., & Rahadi, B. N. J. (2022). Analysis of the difference in biogas volume between continuous and semi-continuous systems. Journal of Engineering Researcher and Lecturer, 1(1), 12–16. https://doi.org/10.58712/jerel.v1i1.5

Alves, G. M., da Silva, J. L., & Stradiotto, N. R. (2021). A novel citrus pectin-modified carbon paste electrochemical sensor used for copper determination in biofuel. Measurement, 169, 108356. https://doi.org/10.1016/J.MEASUREMENT.2020.108356

Anggrainy, R., Ruslan, W., Zariatin, D. L., Gilart, R. A., & Syam, T. (2022). Effect of gasoline vaporizer tube (GVT) with magnetic field on spark-ignition engine: Investigation, discussion, and opinion. Mechanical Engineering for Society and Industry, 2(2), 98–106. https://doi.org/10.31603/mesi.7075

Ayesha, S., Abideen, Z., Haider, G., Zulfiqar, F., El-Keblawy, A., Rasheed, A., Siddique, K. H. M., Khan, M. B., & Radicetti, E. (2023). Enhancing sustainable plant production and food security: Understanding the mechanisms and impacts of electromagnetic fields. Plant Stress, 9, 100198. https://doi.org/10.1016/J.STRESS.2023.100198

Baidoo, M. F., Adjei, E. A., Opoku, R., & Aidam, G. S. K. (2022). Rubber seed oil: Potential feedstock for aviation biofuel production. Scientific African, 17, e01393. https://doi.org/10.1016/J.SCIAF.2022.E01393

Basar, A. R., Jalil, S., & ’Afiat, A. N. H. , & G. R. H. (2023). Computer network design using the simple queue method in maximising network performance in companies. Journal of Computer-Based Instructional Medi, 1(2), 73–87.

Chen, B.-S., Zeng, Y.-Y., Liu, L., Chen, L., Duan, P., Luque, R., Ge, R., & Zhang, W. (2022). Advances in catalytic decarboxylation of bioderived fatty acids to diesel-range alkanes. Renewable and Sustainable Energy Reviews, 158, 112178. https://doi.org/10.1016/j.rser.2022.112178

Dinul, F. I., Nurdin, H., Rahmadiawan, D., Nasruddin, Laghari, I. A., & Elshaarani, T. (2023). Comparison of NaOH and Na2CO3 as absorbents for CO2 absorption in carbon capture and storage technology. Journal of Engineering Researcher and Lecturer, 2(1), 28–34. https://doi.org/10.58712/jerel.v2i1.23

Dupain, X., Costa, D. J., Schaverien, C. J., Makkee, M., & Moulijn, J. A. (2007). Cracking of a rapeseed vegetable oil under realistic FCC conditions. Applied Catalysis B: Environmental, 72(1–2), 44–61. https://doi.org/10.1016/J.APCATB.2006.10.005

Ezzati, R., Ranjbar, S., & Soltanabadi, A. (2021). Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis. Renewable Energy, 168, 280–296. https://doi.org/10.1016/J.RENENE.2020.12.055

Fauza, A., Qalbina, F., Nurdin, H., Ambiyar, A., & Refdinal, R. (2023). The influence of processing on the mechanical properties and emissions of recycled polyolefin. Teknomekanik, 6(1), 21–28. https://doi.org/10.24036/teknomekanik.v6i1.21472

Grimes, Christopher. J., Hardcastle, T., Manga, M. S., Mahmud, T., & York, D. W. (2020). Calcium carbonate particle formation through precipitation in a stagnant bubble and a bubble column reactor. Crystal Growth & Design, 20(8), 5572–5582. https://doi.org/10.1021/acs.cgd.0c00741

Guan, D., Wang, F., Zhang, X., Dou, W., & Sun, Y. (2023). Comprehensive study on catalytic coating tubular reactor with electromagnetic induction heating for hydrogen production through methanol steam reforming. International Journal of Hydrogen Energy. https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.07.316

Gutiérrez, J., Galán, C. A., Suárez, R., Álvarez-Murillo, A., & González, J. F. (2018). Biofuels from cardoon pyrolysis: Extraction and application of biokerosene/kerosene mixtures in a self-manufactured jet engine. Energy Conversion and Management, 157, 246–256. https://doi.org/10.1016/J.ENCONMAN.2017.12.006

Hendri, H., Arief, Y. Z., & Syukur, A. (2023). Testing of palm oil-based electric power transformer insulation oil as a renewable energy source. Jurnal Pendidikan Teknologi Kejuruan, 6(1), 56–63. https://doi.org/10.24036/jptk.v6i1.32323

Islam, A. K. M. A., Yaakob, Z., Anuar, N., Primandari, S. R. P., & Ghani, J. A. (2017). Properties of jatropha hybrid seed oil and its suitability as biodiesel feedstock. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(16), 1707–1717. https://doi.org/10.1080/15567036.2013.821546

Jaya, H. S., Wardana, I. N. G., Hamidi, N., & Widhiyanuriyawan, D. (2021). Hydrolysis reaction utilizing cavitation from high pressure water jet impinging into palm oil bath. Ain Shams Engineering Journal, 12(4), 3905–3918. https://doi.org/https://doi.org/10.1016/j.asej.2021.03.023

Khan, S., Qureshi, K. M., Kay Lup, A. N., Patah, M. F. A., & Wan Daud, W. M. A. (2022). Role of Ni–Fe/ZSM-5/SAPO-11 bifunctional catalyst on hydrodeoxygenation of palm oil and triolein for alternative jet fuel production. Biomass and Bioenergy, 164, 106563. https://doi.org/10.1016/J.BIOMBIOE.2022.106563

Khodadadi Azadboni, F. (2021). Quantum effects role on the electromagnetic instability growth rate in turbulent state of the fuel fusion. Chinese Journal of Physics, 71, 375–384. https://doi.org/10.1016/J.CJPH.2021.03.008

Kim, D.-W., Im, K.-K., Kim, H. J., Lee, D. H., Kim, Y. A., Choi, J., & Yang, K. S. (2020). Effects of electromagnetic irradiation on low-molecular-weight fraction of fluidized catalytic cracking decant oil for synthesis of pitch precursor. Journal of Industrial and Engineering Chemistry, 82, 205–210. https://doi.org/10.1016/j.jiec.2019.10.014

Llamas, A., García-Martínez, M., Al-Lal, A.-M., Canoira, L., & Lapuerta, M. (2012). Biokerosene from coconut and palm kernel oils: Production and properties of their blends with fossil kerosene. Fuel, 102, 483–490. https://doi.org/https://doi.org/10.1016/j.fuel.2012.06.108

Mahdi, H. I., Bazargan, A., McKay, G., Azelee, N. I. W., & Meili, L. (2021). Catalytic deoxygenation of palm oil and its residue in green diesel production: A current technological review. Chemical Engineering Research and Design, 174, 158–187. https://doi.org/10.1016/J.CHERD.2021.07.009

Neves, R. C., Klein, B. C., da Silva, R. J., Rezende, M. C. A. F., Funke, A., Olivarez-Gómez, E., Bonomi, A., & Maciel-Filho, R. (2020). A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production. Renewable and Sustainable Energy Reviews, 119, 109607. https://doi.org/https://doi.org/10.1016/j.rser.2019.109607

Nurdin, H., Wagino, W., Sari, D. Y., & Siregar, B. M. (2022). Characteristics of calorific value of briquettes made from cymbopogon citratus waste as an alternative fuel. Teknomekanik, 5(1), 42–47. https://doi.org/10.24036/teknomekanik.v5i1.12572

Ponomarev, A. V. (2023). Direct conversion of methane to heavier gaseous alkanes using an electron beam. Chemical Engineering Journal Advances, 15, 100513. https://doi.org/10.1016/j.ceja.2023.100513

Primandari, S. R. P., Arafat, A., & Veny, H. (2021). Optimization of waste cooking oil’s FFA as biodiesel feedstock. Teknomekanik, 4(1), 14–21. https://doi.org/10.24036/teknomekanik.v4i1.9072

Primo, C. M., Buffon, E., & Stradiotto, N. R. (2021). A carbon nanotubes-pectin composite for electrochemical determination of copper in aviation biokerosene by anodic stripping voltammetry. Fuel, 302, 121180. https://doi.org/10.1016/J.FUEL.2021.121180

Pujan, R., Hauschild, S., & Gröngröft, A. (2017). Process simulation of a fluidized-bed catalytic cracking process for the conversion of algae oil to biokerosene. Fuel Processing Technology, 167, 582–607. https://doi.org/https://doi.org/10.1016/j.fuproc.2017.07.029

Purwanto, W., Su, J. C. T., Rochman, M. L., Waluyo, B., Krismadinata, K., & Arif, A. (2023). Study on the addition of a swirling vane to spark ignition engines fueled by gasoline and gasoline-ethanol. Automotive Experiences, 6(1), 162–172. https://doi.org/10.31603/ae.7981

Rahayu, S. M. N., Hananto, A. L., Herawan, S. G., Asy’ari, M. Z., Sule, A., Idris, M., Hermansyah, D., Balogun, S. A., & Ali, E. A. B. (2022). A review of automotive green technology: Potential of butanol as biofuel in gasoline engine. Mechanical Engineering for Society and Industry, 2(2), 82–97. https://doi.org/10.31603/mesi.7155

Rahmadiawan, D., Ilhamsyah, F., Abral, H., Laghari, I. A., & A, Y. (2022). Effect of sonication to the stability properties of carboxymethyl cellulose/uncaria gambir extract water-based lubricant. Teknomekanik, 5(2), 97–102. https://doi.org/10.24036/teknomekanik.v5i2.16972

Razak, M. A., & Zulfia, A. (2023). Synthesis optimization of cathode precursor Ni0,5 Mn0,4 Co0.1 (OH)2 with coprecipitation method. Jurnal Pendidikan Teknologi Kejuruan, 6(1), 1–8. https://doi.org/10.24036/jptk.v6i1.30523

Rosa, L. F. M., Röhring, K., & Harnisch, F. (2024). Electrolysis of medium chain carboxylic acids to aviation fuel at technical scale. Fuel, 356, 129590. https://doi.org/10.1016/j.fuel.2023.129590

Sani, W. N. H. M., Jaya, R. P., Bunyamin, B., Al-Saffar, Z. H., & Arbi, Y. (2023). Waste motor engine oil – the influence in warm mix asphalt. Jurnal Pendidikan Teknologi Kejuruan, 6(4), 248–255. https://doi.org/https://doi.org/10.24036/jptk.v6i4.34623

Santos, M. R., Arias, S., Padilha, J. F., Carneiro, M. C. N., Sales, E. A., Pacheco, J. G. A., & Fréty, R. (2020). Catalytic cracking of palmitic and oleic acids pre-adsorbed on ?-alumina. Catalysis Today, 344, 234–239. https://doi.org/10.1016/J.CATTOD.2019.04.005

Setiyo, M. (2022). Alternative fuels for transportation sector in Indonesia. Mechanical Engineering for Society and Industry, 2(1), 1–6. https://doi.org/10.31603/mesi.6850

Shehu, U. E., Chow, T. Q., Hafid, H. S., Mokhtar, M. N., Baharuddin, A. S., & Nawi, N. M. (2019). Kinetics of thermal hydrolysis of crude palm oil with mass and heat transfer in a closed system. Food and Bioproducts Processing, 118, 187–197. https://doi.org/https://doi.org/10.1016/j.fbp.2019.09.009

Souza, T. G. dos S., Santos, B. L. P., Santos, A. M. A., Souza, A. M. G. P. de, Correia de Melo, J., & Wisniewski, A. (2018). Thermal and catalytic micropyrolysis for conversion of cottonseed oil dregs to produce biokerosene. Journal of Analytical and Applied Pyrolysis, 129, 21–28. https://doi.org/10.1016/J.JAAP.2017.12.010

Yamamoto, T., Kanazu, T., Nambu, M., & Tanosaki, T. (2006). Pozzolanic reactivity of fly ash – API method and K-value. Fuel, 85(16), 2345–2351. https://doi.org/10.1016/J.FUEL.2006.01.034

Yuvenda, D., Sudarmanta, B., Jamaludin, Muraza, O., Putra, R. P., Lapisa, R., Krismadinata, Zainul, R., Asnil, Setiyo, M., & Primandari, S. R. P. (2022). Combustion and emission characteristics of CNG-diesel dual fuel engine with variation of air fuel ratio. Automotive Experiences, 5(3), 507–527. https://doi.org/10.31603/ae.7807

Yuvenda, D., Sudarmanta, B., Wahjudi, A., & Hirowati, R. A. (2022). Effect of adding combustion air on emission in a diesel dual-fuel engine with crude palm oil biodiesel compressed natural gas fuels. International Journal of Renewable Energy Development, 11(3), 871–877. https://doi.org/10.14710/ijred.2022.41275

Zhang, B. S., Wang, Y., Zhang, N., Zhu, J., Ji, W., Chen, F., Chen, X., Yu, Y., & Zhang, B. (2023). Electromagnetic field-assisted low-temperature ammonia synthesis. Science Bulletin. https://doi.org/10.1016/J.SCIB.2023.07.037

Downloads

Published

2023-12-10

How to Cite

Primandari, S. R. P., Krismadinata, K., Yuvenda, D. ., Lapisa, R., Kurniawan, A., Mulianti, M., Bustan, M. D., Haryati, S., Sushanti, G., Elshaarani, T. ., & Chaniago, Y. D. (2023). Triglycerides of Crude Palm Oil to Biokerosene: Studies on Electrolysis and Electromagnetic Effect. Journal of Applied Engineering and Technological Science (JAETS), 5(1), 557–568. https://doi.org/10.37385/jaets.v5i1.3127