Multi-Object Detection Using YOLOv7 Object Detection Algorithm on Mobile Device

Authors

  • Patricia Citranegara Kusuma Universitas Bina Nusantara
  • Benfano Soewito Bina Nusantara University

DOI:

https://doi.org/10.37385/jaets.v5i1.3207

Keywords:

Multi-Object Detection, YOLOv7, Quantization, Mobile Application

Abstract

This research discusses the importance of enhancing real-time object detection on mobile devices by introducing a new multi-object detection system that uses the quantified YOLOv7 model. Focusing on the complexities of food item detection, particularly in diverse and intricate contexts, our study uses a dataset that includes five food classes. By investigating the influence of data quantity on the detection model, we demonstrate the superiority of larger datasets in both YOLOv5 and YOLOv7. In addition, our comparison shows that YOLOv7 has better precision, recall, and F1-score values compared to YOLOv5. The crucial methodological contribution lies in the successful quantification of the YOLOv7 model, reducing the model size from 28.6 KB to 14.3 KB and enabling seamless mobile application development. This high-performance mobile application displays a real-time interface response time of 235ms, with precision, recall, and F1-score values of 0.923, 0.9, and 0.911, respectively. Beyond the practical implications for informed dietary choices and improved health outcomes, our study develops object detection techniques theoretically, offering valuable insights that can be applied across various domains and emphasizing the potential impact of our approach on both theory and practice

Downloads

Download data is not yet available.

References

Akhtar, M. J., Mahum, R., Butt, F. S., Amin, R., El-Sherbeeny, A. M., Lee, S. M., & Shaikh, S. (2022). A Robust Framework for Object Detection in a Traffic Surveillance System. Electronics, 11(21), 3425. https://doi.org/10.3390/electronics11213425

Alfarrarjeh, A., Trivedi, D., Kim, S. H., & Shahabi, C. (2018). A Deep Learning Approach for Road Damage Detection from Smartphone Images. 2018 IEEE International Conference on Big Data (Big Data), 5201–5204. https://doi.org/10.1109/BigData.2018.8621899

Almansouri, M., Verkerk, R., Fogliano, V., & Luning, P. A. (2021). Exploration of heritage food concept. Trends in Food Science & Technology, 111, 790–797. https://doi.org/10.1016/j.tifs.2021.01.013

Arunmozhi, A., & Park, J. (2018). Comparison of HOG, LBP and Haar-Like Features for On-Road Vehicle Detection. 2018 IEEE International Conference on Electro/Information Technology (EIT), 0362–0367. https://doi.org/10.1109/EIT.2018.8500159

Batal, M., Chan, H. M., Fediuk, K., Ing, A., Berti, P., Sadik, T., & Johnson-Down, L. (2021). Importance of the traditional food systems for First Nations adults living on reserves in Canada. Canadian Journal of Public Health, 112(S1), 20–28. https://doi.org/10.17269/s41997-020-00353-y

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K., & Ghayvat, H. (2021). CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics, 10(20), 2470. https://doi.org/10.3390/electronics10202470

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection.

Cao, C., Wang, B., Zhang, W., Zeng, X., Yan, X., Feng, Z., Liu, Y., & Wu, Z. (2019). An Improved Faster R-CNN for Small Object Detection. IEEE Access, 7, 106838–106846. https://doi.org/10.1109/ACCESS.2019.2932731

Chen, H.-C., Widodo, A. M., Wisnujati, A., Rahaman, M., Lin, J. C.-W., Chen, L., & Weng, C.-E. (2022). AlexNet Convolutional Neural Network for Disease Detection and Classification of Tomato Leaf. Electronics, 11(6), 951. https://doi.org/10.3390/electronics11060951

Chen, J., Liu, H., Zhang, Y., Zhang, D., Ouyang, H., & Chen, X. (2022). A Multiscale Lightweight and Efficient Model Based on YOLOv7: Applied to Citrus Orchard. Plants, 11(23), 3260. https://doi.org/10.3390/plants11233260

Chen, J.-W., Lin, W.-J., Cheng, H.-J., Hung, C.-L., Lin, C.-Y., & Chen, S.-P. (2021). A Smartphone-Based Application for Scale Pest Detection Using Multiple-Object Detection Methods. Electronics, 10(4), 372. https://doi.org/10.3390/electronics10040372

Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: a review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9(2), 85–112. https://doi.org/10.1007/s13748-019-00203-0

Fakhrou, A., Kunhoth, J., & Al Maadeed, S. (2021). Smartphone-based food recognition system using multiple deep CNN models. Multimedia Tools and Applications, 80(21–23), 33011–33032. https://doi.org/10.1007/s11042-021-11329-6

Fukase, E., & Martin, W. (2020). Economic growth, convergence, and world food demand and supply. World Development, 132, 104954. https://doi.org/10.1016/j.worlddev.2020.104954

Gallo, I., Rehman, A. U., Dehkordi, R. H., Landro, N., La Grassa, R., & Boschetti, M. (2023). Deep Object Detection of Crop Weeds: Performance of YOLOv7 on a Real Case Dataset from UAV Images. Remote Sensing, 15(2), 539. https://doi.org/10.3390/rs15020539

Gao, M., Qi, D., Mu, H., & Chen, J. (2021). A Transfer Residual Neural Network Based on ResNet-34 for Detection of Wood Knot Defects. Forests, 12(2), 212. https://doi.org/10.3390/f12020212

Huynh, Q. T., Nguyen, P. H., Le, H. X., Ngo, L. T., Trinh, N.-T., Tran, M. T.-T., Nguyen, H. T., Vu, N. T., Nguyen, A. T., Suda, K., Tsuji, K., Ishii, T., Ngo, T. X., & Ngo, H. T. (2022). Automatic Acne Object Detection and Acne Severity Grading Using Smartphone Images and Artificial Intelligence. Diagnostics, 12(8), 1879. https://doi.org/10.3390/diagnostics12081879

Imambi, S., Prakash, K. B., & Kanagachidambaresan, G. R. (2021). PyTorch (pp. 87–104). https://doi.org/10.1007/978-3-030-57077-4_10

Jeong, D. (2020). Road Damage Detection Using YOLO with Smartphone Images. 2020 IEEE International Conference on Big Data (Big Data), 5559–5562. https://doi.org/10.1109/BigData50022.2020.9377847

Kagaya, H., Aizawa, K., & Ogawa, M. (2014). Food Detection and Recognition Using Convolutional Neural Network. Proceedings of the 22nd ACM International Conference on Multimedia, 1085–1088. https://doi.org/10.1145/2647868.2654970

Kawano, Y., & Yanai, K. (2015). FoodCam: A real-time food recognition system on a smartphone. Multimedia Tools and Applications, 74(14), 5263–5287. https://doi.org/10.1007/s11042-014-2000-8

Kumar, A., Zhang, Z. J., & Lyu, H. (2020). Object detection in real time based on improved single shot multi-box detector algorithm. EURASIP Journal on Wireless Communications and Networking, 2020(1), 204. https://doi.org/10.1186/s13638-020-01826-x

Kumari, N., Ruf, V., Mukhametov, S., Schmidt, A., Kuhn, J., & Küchemann, S. (2021). Mobile Eye-Tracking Data Analysis Using Object Detection via YOLO v4. Sensors, 21(22), 7668. https://doi.org/10.3390/s21227668

Li, K., Wang, Y., & Hu, Z. (2023). Improved YOLOv7 for Small Object Detection Algorithm Based on Attention and Dynamic Convolution. Applied Sciences, 13(16), 9316. https://doi.org/10.3390/app13169316

Li, S., Wang, S., & Wang, P. (2023). A Small Object Detection Algorithm for Traffic Signs Based on Improved YOLOv7. Sensors, 23(16), 7145. https://doi.org/10.3390/s23167145

Lu, S., Wang, B., Wang, H., Chen, L., Linjian, M., & Zhang, X. (2019). A real-time object detection algorithm for video. Computers & Electrical Engineering, 77, 398–408. https://doi.org/10.1016/j.compeleceng.2019.05.009

Mansour, M. Y. M. A., D. Dambul, K., & Choo, K. Y. (2022). Object Detection Algorithms for Ripeness Classification of Oil Palm Fresh Fruit Bunch. International Journal of Technology, 13(6), 1326. https://doi.org/10.14716/ijtech.v13i6.5932

Martinez-Alpiste, I., Golcarenarenji, G., Wang, Q., & Alcaraz-Calero, J. M. (2022). Smartphone-based real-time object recognition architecture for portable and constrained systems. Journal of Real-Time Image Processing, 19(1), 103–115. https://doi.org/10.1007/s11554-021-01164-1

Nepal, U., & Eslamiat, H. (2022). Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs. Sensors, 22(2), 464. https://doi.org/10.3390/s22020464

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788. https://doi.org/10.1109/CVPR.2016.91

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6517–6525. https://doi.org/10.1109/CVPR.2017.690

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement.

Sharma, K. U., & Thakur, N. V. (2017). A review and an approach for object detection in images. International Journal of Computational Vision and Robotics, 7(1/2), 196. https://doi.org/10.1504/IJCVR.2017.10001813

Shen, Z., Liu, Z., Li, J., Jiang, Y.-G., Chen, Y., & Xue, X. (2020). Object Detection from Scratch with Deep Supervision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 398–412. https://doi.org/10.1109/TPAMI.2019.2922181

Sitaula, C., & Hossain, M. B. (2021). Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Applied Intelligence, 51(5), 2850–2863. https://doi.org/10.1007/s10489-020-02055-x

Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.

Wang, Y., Jia, X., Zhou, M., Xie, L., & Tian, Z. (2019). A novel F-RCNN based hand gesture detection approach for FMCW systems. Wireless Networks. https://doi.org/10.1007/s11276-019-02096-2

Wei, G., Li, G., Zhao, J., & He, A. (2019). Development of a LeNet-5 Gas Identification CNN Structure for Electronic Noses. Sensors, 19(1), 217. https://doi.org/10.3390/s19010217

Wu, D., Jiang, S., Zhao, E., Liu, Y., Zhu, H., Wang, W., & Wang, R. (2022). Detection of Camellia oleifera Fruit in Complex Scenes by Using YOLOv7 and Data Augmentation. Applied Sciences, 12(22), 11318. https://doi.org/10.3390/app122211318

Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., Huang, J., & Hua, X. (2019). Quantization Networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7300–7308. https://doi.org/10.1109/CVPR.2019.00748

Yao, J., Qi, J., Zhang, J., Shao, H., Yang, J., & Li, X. (2021). A Real-Time Detection Algorithm for Kiwifruit Defects Based on YOLOv5. Electronics, 10(14), 1711. https://doi.org/10.3390/electronics10141711

Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., Asghar, M., & Lee, B. (2022). A survey of modern deep learning based object detection models. Digital Signal Processing, 126, 103514. https://doi.org/10.1016/j.dsp.2022.103514

Zhang, H., Liu, L. Z., Xie, H., Jiang, Y., Zhou, J., & Wang, Y. (2022). Deep Learning-Based Robot Vision: High-End Tools for Smart Manufacturing. IEEE Instrumentation & Measurement Magazine, 25(2), 27–35. https://doi.org/10.1109/MIM.2022.9756392

Zhao, J., Zhang, X., Yan, J., Qiu, X., Yao, X., Tian, Y., Zhu, Y., & Cao, W. (2021). A Wheat Spike Detection Method in UAV Images Based on Improved YOLOv5. Remote Sensing, 13(16), 3095. https://doi.org/10.3390/rs13163095

Downloads

Published

2023-12-10

How to Cite

Kusuma, P. C., & Soewito, B. (2023). Multi-Object Detection Using YOLOv7 Object Detection Algorithm on Mobile Device. Journal of Applied Engineering and Technological Science (JAETS), 5(1), 305–320. https://doi.org/10.37385/jaets.v5i1.3207