Fetal Heart Disease Detection Via Deep Reg Network Based on Ultrasound Images
DOI:
https://doi.org/10.37385/jaets.v5i1.3226Keywords:
Congenital heart disease (CHD), Deep learning, Ultrasound (US) images, Reg net -module, SCRAB (scalable range based adaptive bilateral filter)Abstract
Congenital heart disease (CHD) is the most prevalent congenital ailment. One in every four newborns born with serious coronary artery disease will require surgery or other early therapy. Early identification of CHD in the fetal heart, on the other hand, is more critical for diagnosis. Extracting information from ultrasound (US) images is a difficult and time-consuming job. Deep learning (Dl) CNNs have been frequently utilized in fetal echocardiography for CAD identification to overcome this difficulty. In this work, a DL based neural network is proposed for classifying the normal and abnormal fetal heart based on US images. A total of 363 pregnant women between the ages of 18 and 34 weeks who had coronary artery disease or fetal good hearts were included. These US images are pre-processed using SCRAB (scalable range based adaptive bilateral filter) for eliminating the noise artifacts. The relevant features are extracted from the US images and classify them into normal and CHD by using the deep Reg net network. The proposed model integrates the Reg net -module with the CNN architecture to diminish the computational complexity and, simultaneously, attains an effectual classification accuracy. The proposed network attains higher accuracy of 98.4% for the normal and 97.2% for CHD. To confirm the efficiency of the proposed Reg net is compared to the various deep learning networks.
Downloads
References
Arnaout, R., Curran, L., Zhao, Y., Levine, J. C., Chinn, E., & Moon-Grady, A. J. (2020). Expert-level prenatal detection of complex congenital heart disease from screening ultrasound using deep learning. medRxiv, 2020-06. https://doi.org/10.1101/2020.06.22.20137786
Barinov, L., Jairaj, A., Becker, M., Seymour, S., Lee, E., Schram, A., ... & Paster, L. (2019). Impact of data presentation on physician performance utilizing artificial intelligence-based computer-aided diagnosis and decision support systems. Journal of Digital Imaging, 32, 408-416. https://doi.org/10.1007/s10278-018-0132-5
Bhushan, V.P., Amulya, P., Reddy, S.N., Hari, Y.S., & Kumar, T.Y. (2023). Chronic Heart Failure Detection Based On Heart Sounds Using ML and DL. Journal of Engineering Sciences, 14(04).
Brady, B., King, G., Murphy, R.T., & Walsh, D. (2023). Myocardial strain: A clinical review. Irish Journal of Medical Science (1971-), 192(4), 1649-1656. https://doi.org/10.1007/s11845-022-03210-8
Dakshina, D.S., Jayapriya, P., & Kala, R. (2023). Saree texture analysis and classification via deep learning framework, International Journal of Data Science and Artificial Intelligence, 01 (01), 20-25.
Dozen, A., Komatsu, M., Sakai, A., Komatsu, R., Shozu, K., Machino, H., Yasutomi, S., Arakaki, T., Asada, K., Kaneko, S., & Matsuoka, R. (2020). Image segmentation of the ventricular septum in fetal cardiac ultrasound videos based on deep learning using time-series information. Biomolecules, 10(11), 1526. https://doi.org/10.3390/biom10111526
Hamamoto, R., Suvarna, K., Yamada, M., Kobayashi, K., Shinkai, N., Miyake, M., Takahashi, M., Jinnai, S., Shimoyama, R., Sakai, A., & Takasawa, K. (2020). Application of artificial intelligence technology in oncology: Towards the establishment of precision medicine. Cancers, 12(12), 3532. https://doi.org/10.3390/cancers12123532
Hemamalini, V., Anand, L., Nachiyappan, S., Geeitha, S., Motupalli, V.R., Kumar, R., Ahilan, A., & Rajesh, M. (2022). Integrating bio medical sensors in detecting hidden signatures of COVID-19 with Artificial intelligence. Measurement, 194, p.111054. https://doi.org/10.1016/j.measurement.2022.111054
Ji, X., & Ke, W. (2023). Red blood cell distribution width and all-cause mortality in congestive heart failure patients: a retrospective cohort study based on the Mimic-III database. Frontiers in Cardiovascular Medicine, 10, 1126718. https://doi.org/10.3389/fcvm.2023.1126718
Jiang, Z., Salcudean, S.E., & Navab, N. (2023). Robotic ultrasound imaging: State-of-the-art and future perspectives. Medical Image Analysis, 102878. https://doi.org/10.1016/j.media.2023.102878
Komatsu, M., Sakai, A., Komatsu, R., Matsuoka, R., Yasutomi, S., Shozu, K., Dozen, A., Machino, H., Hidaka, H., Arakaki, T., & Asada, K. (2021). Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning. Applied Sciences, 11(1), 371. https://doi.org/10.3390/app11010371
Kumar, M.D., & Ramana, K.V. (2021). Cardiovascular disease prognosis and severity analysis using hybrid heuristic methods. Multimedia Tools and Applications, 80(5), 7939-7965. https://doi.org/10.1007/s11042-020-10000-w
Kumar, S.N., Ahilan, A., Fred, A.L., & Kumar, H.A. (2021b). ROI extraction in CT lung images of COVID-19 using Fast Fuzzy C means clustering. In Biomedical Engineering Tools for Management for Patients with COVID-19, 103-119. https://doi.org/10.1016/B978-0-12-824473-9.00001-X
Kumar, S.N., Ahilan, A., Haridhas, A.K., & Sebastian, J. (2021a). Gaussian Hermite polynomial based lossless medical image compression. Multimedia Systems, 27(1), 15-31. https://doi.org/10.1007/s00530-020-00689-y
Kusunose, K., Abe, T., Haga, A., Fukuda, D., Yamada, H., Harada, M., & Sata, M. (2020). A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images. Cardiovascular Imaging, 13(2_Part_1), 374-381. https://doi.org/10.1016/j.jcmg.2019.02.024
Lamture, V., Lamture, P., & Lamture, Y. (2023). Case Report: An infant with agenesis of the corpus callosum (AgCC) with normal developmental milestones. F1000Research, 12, 1324. https://doi.org/10.12688/f1000research.141795.1
Lewis-Israeli, Y.R., Wasserman, A.H., Gabalski, M.A., Volmert, B.D., Ming, Y., Ball, K.A., Yang, W., Zou, J., Ni, G., Pajares, N., & Chatzistavrou, X. (2021). Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nature communications, 12(1), 1-16. https://doi.org/10.1038/s41467-021-25329-5
Liu, H., Chu, W., & Wang, H. (2020). Automatic segmentation algorithm of ultrasound heart image based on convolutional neural network and image saliency. IEEE Access, 8, 104445-104457. DOI: 10.1109/ACCESS.2020.2989819
Lukhele, S., Mulaudzi, F.M., Sepeng, N., Netshisaulu, K., Ngunyulu, R.N., Musie, M. and Anokwuru, R. (2023). The training of midwives to perform obstetric ultrasound scan in Africa for task shifting and extension of scope of practice: a scoping review. BMC Medical Education, 23(1), 764. https://doi.org/10.1186/s12909-023-04647-w
Meng, Q., Sinclair, M., Zimmer, V., Hou, B., Rajchl, M., Toussaint, N., Oktay, O., Schlemper, J., Gomez, A., Housden, J., & Matthew, J. (2019). Weakly supervised estimation of shadow confidence maps in fetal ultrasound imaging. IEEE transactions on medical imaging, 38(12), 2755-2767. doi: 10.1109/TMI.2019.2913311.
Mishra, J., & Tiwari, M. (2023). IoT-enabled ECG-based heart disease prediction using three-layer deep learning and meta-heuristic approach. Signal, Image and Video Processing, 1-7. https://doi.org/10.1007/s11760-023-02743-4
Narasimhan, M.G. (2018). Dynamic video anomaly detection and localization using sparse denoising autoencoders. Multimedia Tools and Applications, 77(11), 13173-13195. https://doi.org/10.1007/s11042-017-4940-2
Nayak, G., Bolla, V., Balivada, S.K., & Prabhudev, P. (2022). Technological Evolution of Ultrasound Devices: A Review. International Journal of Health Technology and Innovation, 1(03), 24-32. https://doi.org/10.60142/ijhti.v1i03.55
Neyja, M., Mumtaz, S., Huq, K. M. S., Busari, S. A., Rodriguez, J., & Zhou, Z. (2017, December). An IoT-based e-health monitoring system using ECG signal. In GLOBECOM 2017-2017 IEEE Global Communications Conference (pp. 1-6). IEEE. doi: 10.1109/GLOCOM.2017.8255023
Nurmaini, S., Partan, R.U., Bernolian, N., Sapitri, A.I., Tutuko, B., Rachmatullah, M.N., Darmawahyuni, A., Firdaus, F., & Mose, J.C. (2022). Deep learning for improving the effectiveness of routine prenatal screening for major congenital heart diseases. Journal of Clinical Medicine, 11(21), 6454. https://doi.org/10.3390/jcm11216454
Nurmaini, S., Rachmatullah, M.N., Sapitri, A.I., Darmawahyuni, A., Tutuko, B., Firdaus, F., Partan, R.U., & Bernolian, N. (2021). Deep learning-based computer-aided fetal echocardiography: application to heart standard view segmentation for congenital heart defects detection. Sensors, 21(23), 8007. https://doi.org/10.3390/s21238007
Okafor, J., Khattar, R., Sharma, R., & Kouranos, V. (2023). The Role of Echocardiography in the Contemporary Diagnosis and Prognosis of Cardiac Sarcoidosis: A Comprehensive Review. Life, 13(8), 1653. https://doi.org/10.3390/life13081653
Pesapane, F., Codari, M., & Sardanelli, F. (2018). Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. European radiology experimental, 2(1), 1-10. https://doi.org/10.1186/s41747-018-0061-6
Picano, E., Pierard, L., Peteiro, J., Djordjevic-Dikic, A., Sade, L.E., Cortigiani, L., Van De Heyning, C.M., Celutkiene, J., Gaibazzi, N., Ciampi, Q., & Senior, R. (2023). The clinical use of stress echocardiography in chronic coronary syndromes and beyond coronary artery disease: a clinical consensus statement from the European Association of Cardiovascular Imaging of the ESC. European Heart Journal-Cardiovascular Imaging, jead250. https://doi.org/10.1093/ehjci/jead250
Prayer, D., Malinger, G., De Catte, L., De Keersmaecker, B., Gonçalves, L.F., Kasprian, G., Laifer?Narin, S., Lee, W., Millischer, A.E., Platt, L., & Prayer, F. (2023). ISUOG Practice Guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound in Obstetrics & Gynecology, 61(2), 278. doi: 10.1002/uog.26129
Rana, M., & Bhushan, M. (2023). Machine learning and deep learning approach for medical image analysis: diagnosis to detection. Multimedia Tools and Applications, 82(17), 26731-26769. https://doi.org/10.1007/s11042-022-14305-w
Ricci, F., De Innocentiis, C., Verrengia, E., Ceriello, L., Mantini, C., Pietrangelo, C., Irsuti, F., Gabriele, S., D'Alleva, A., Khanji, M.Y., & Aung, N. (2020). The role of multimodality cardiovascular imaging in peripartum cardiomyopathy. Frontiers in Cardiovascular Medicine, 7, 4. https://doi.org/10.3389/fcvm.2020.00004
Sarra, R. R., Dinar, A. M., Mohammed, M. A., Ghani, M. K. A., & Albahar, M. A. (2022). A robust framework for data generative and heart disease prediction based on efficient deep learning models. Diagnostics, 12(12), 2899. https://doi.org/10.3390/diagnostics12122899
Summerlin, D., Willis, J., Boggs, R., Johnson, L.M., & Porter, K.K. (2022). Radiation Dose Reduction Opportunities in Vascular Imaging. Tomography, 8(5), 2618-2638. https://doi.org/10.3390/tomography8050219
Sundarasekar, R., & Appathurai, A. (2021). Efficient brain tumor detection and classification using magnetic resonance imaging. Biomedical Physics & Engineering Express, 7(5), 055007. DOI 10.1088/2057-1976/ac0ccc
Toba, S., Mitani, Y., Yodoya, N., Ohashi, H., Sawada, H., Hayakawa, H., Hirayama, M., Futsuki, A., Yamamoto, N., Ito, H., & Konuma, T. (2020). Prediction of pulmonary to systemic flow ratio in patients with congenital heart disease using deep learning–based analysis of chest radiographs. JAMA cardiology, 5(4), 449-457. doi:10.1001/jamacardio.2019.5620
Van Velzen, S. G., Zreik, M., Lessmann, N., Viergever, M. A., de Jong, P. A., Verkooijen, H. M., & Išgum, I. (2019, March). Direct prediction of cardiovascular mortality from low-dose chest CT using deep learning. In Medical Imaging 2019: Image Processing (Vol. 10949, pp. 240-245). SPIE. https://doi.org/10.1117/12.2512400
Xiao, S., Zhang, J., Zhu, Y., Zhang, Z., Cao, H., Xie, M., & Zhang, L. (2023). Application and Progress of Artificial Intelligence in Fetal Ultrasound. Journal of Clinical Medicine, 12(9), 3298. https://doi.org/10.3390/jcm12093298
Yagel, S., Cohen, S.M., Achiron, R., Zalel, Y., & Abuhamad, A. (2018). First and early second trimester fetal heart screening. Fetal Cardiology, 177-191.
Yamamoto, Y., Tsuzuki, T., Akatsuka, J., Ueki, M., Morikawa, H., Numata, Y., Takahara, T., Tsuyuki, T., Tsutsumi, K., Nakazawa, R., & Shimizu, A. (2019). Automated acquisition of explainable knowledge from unannotated histopathology images. Nature communications, 10(1), 1-9. https://doi.org/10.1038/s41467-019-13647-8
Zafar, S., Iftekhar, N., Yadav, A., Ahilan, A., Kumar, S.N., & Jeyam, A. (2022). An IoT Method for Telemedicine: Lossless Medical Image Compression Using Local Adaptive Blocks. IEEE Sensors Journal, 22(15), 15345-15352. doi: 10.1109/JSEN.2022.3184423
Zhan, J., Zhong, L., & Wu, J. (2022). Assessment and Treatment for Coronary Microvascular Dysfunction by Contrast Enhanced Ultrasound. Frontiers in Cardiovascular Medicine, 9, 899099. https://doi.org/10.3389/fcvm.2022.899099
Zhang, X., Gosnell, J., Nainamalai, V., Page, S., Huang, S., Haw, M., Peng, B., Vettukattil, J., & Jiang, J. (2023b). Advances in TEE-Centric Intraprocedural Multimodal Image Guidance for Congenital and Structural Heart Disease. Diagnostics, 13(18), 2981. https://doi.org/10.3390/diagnostics13182981
Zhang, Y., Zhu, H., Cheng, J., Wang, J., Gu, X., Han, J., Zhang, Y., Zhao, Y., He, Y. and Zhang, H. (2023a). Improving the Quality of Fetal Heart Ultrasound Imaging with Multihead Enhanced Self-Attention and Contrastive Learning. IEEE Journal of Biomedical and Health Informatics. doi: 10.1109/JBHI.2023.3303573
Zhao, D., Ferdian, E., Maso Talou, G.D., Quill, G.M., Gilbert, K., Wang, V.Y., Babarenda Gamage, T.P., Pedrosa, J., D’hooge, J., Sutton, T.M., & Lowe, B.S. (2023). MITEA: A dataset for machine learning segmentation of the left ventricle in 3D echocardiography using subject-specific labels from cardiac magnetic resonance imaging. Frontiers in Cardiovascular Medicine, 9, 1016703. https://doi.org/10.3389/fcvm.2022.1016703