The Fuel System Modification To Strengthen Achievement And The Prospect Of Utilizing Gasoline Ethanol Blended With Water Injection
DOI:
https://doi.org/10.37385/jaets.v5i2.3249Keywords:
Carburetor, Electronic Fuel Injection, Emission, Modification, PerformanceAbstract
This research proposes a fuel system conversion from a carburetor to an electronic fuel injection (EFI), to save fossil fuels using gasoline-ethanol combined with water injection. Beneficial as an offer for Indonesian motorcycle environmental friendliness in terms of exhaust emissions. The goal of this study is to improve engine performance and accommodate technology for the deployment of ethanol gasoline implementations. The experiment was conducted using fuel with a ration octane number (RON) of 92, gasoline-ethanol was executed up to E25 then applied water injection (Wi). The results show that converting a conventional carburetor to EFI and additional water injection increases engine performance, mileage, and reduces exhaust emissions.
Downloads
References
Amaral, L. V., Santos, N. D. S. A., Roso, V. R., Sebastião, R. de C. de O., & Pujatti, F. J. P. (2021). Effects of gasoline composition on engine performance, exhaust gases and operational costs. Renewable and Sustainable Energy Reviews, 135, 110196. https://doi.org/10.1016/J.RSER.2020.110196
Asnawi, A., Setiawan, A., Sayuthi, M., Waluyo, T., & Radian, H. (2022). An experimental study on the effects of bioethanol-Gasoline blends on spark-ignition engine performance. Jurnal Polimesin, 20(2), 87–92. http://e-jurnal.pnl.ac.id/polimesin/article/view/2645
Aydogan, H., Ozcelik, A. E., & Acaroglu, M. (2017). An experimental study on the effects of bioethanol — Gasoline blends on engine performance in a spark ignition engine. International Conference Computing Engineering and Design, 23–26. https://doi.org/10.1109/ICCED.2017.8019984
Badawy, T., Panithasan, M. S., Turner, J. W. G., Kim, J., Han, D., Lee, J., AlRamadan, A. S., & Chang, J. (2024). Performance and emissions evaluation of a multi-cylinder research engine fueled with ethanol, methanol, gasoline Euro-6, E85, and iso-stoichiometric ternary GEM mixtures operated at lean conditions. Fuel, 363, 130962. https://doi.org/10.1016/J.FUEL.2024.130962
BPS. (2023). Number of Motor Vehicle by Type - Statistical Data - BPS-Statistics Indonesia. BPS Web. https://www.bps.go.id/en/statistics-table/2/NTcjMg==/number-of-motor-vehicle-by-type--unit-.html
Cabir, B., & Yak?n, A. (2024). Evaluation of gasoline-phthalocyanines fuel blends in terms of engine performance and emissions in gasoline engines. Journal of the Energy Institute, 112, 101483. https://doi.org/10.1016/J.JOEI.2023.101483
Cesur, I., & Uysal, F. (2024). Experimental investigation and artificial neural network-based modelling of thermal barrier engine performance and exhaust emissions for methanol-gasoline blends. Energy, 291, 130393. https://doi.org/10.1016/J.ENERGY.2024.130393
Dhande, D. Y. (2021). Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine. Heliyon, 7(3). https://doi.org/10.1016/j.heliyon.2021.e06380
Dhande, D. Y., Sinaga, N., & Dahe, K. B. (2021). Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine. Heliyon, 7(3), e06380. https://doi.org/10.1016/J.HELIYON.2021.E06380
Elfasakhany, A. (2015). Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis. Engineering Science and Technology, an International Journal, 18(4), 713–719. https://doi.org/10.1016/J.JESTCH.2015.05.003
Ellyanie, Abidin, Z., Astuti, M., Puspitasari, D., Pangestu, A. P., & Fariz, A. K. (2023). Analysis of Ethanol-Pertalite on Performance and Exhaust Gas Emissions Motorcycle. AIP Conference Proceedings, 2689(1). https://doi.org/10.1063/5.0115821/2903667
Elshenawy, A. A., Abdel Razik, S. M., & Gad, M. S. (2023). Modeling of combustion and emissions behavior on the effect of ethanol–gasoline blends in a four stroke SI engine. Advances in Mechanical Engineering, 15(3). https://doi.org/10.1177/16878132231157178/ASSET/IMAGES/LARGE/10.1177_16878132231157178-FIG15.JPEG
Farooq, S., & Vinay Kumar, D. (2023). Experimental investigation of gasoline ethanol methanol iso-stoichiometric blends on SI engine. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.06.138
Hasan, A. O., Al-Rawashdeh, H., Al-Muhtaseb, A. H., Abu-jrai, A., Ahmad, R., & Zeaiter, J. (2018). Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends. Fuel, 231, 197–203. https://doi.org/10.1016/J.FUEL.2018.05.045
Hoang, A. T. (2020a). A study on a solution to reduce emissions by using hydrogen as an alternative fuel for a diesel engine integrated exhaust gas recirculation. In AIP Conference Proceedings (Vol. 2235). https://doi.org/10.1063/5.0007492
Hoang, A. T. (2020b). Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on narrow-angle direct injection (NADI). In Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1805048
Hoang, A. T., Tran, Q. V., Al-Tawaha, A. R. M. S., Pham, V. V., & Nguyen, X. P. (2019). Comparative analysis on performance and emission characteristics of an in-Vietnam popular 4-stroke motorcycle engine running on biogasoline and mineral gasoline. Renewable Energy Focus, 28, 47–55. https://doi.org/10.1016/J.REF.2018.11.001
Inbanaathan, P. V., Balasubramanian, D., Nguyen, V. N., Le, V. V., Wae-Hayee, M., R, R., Veza, I., Yukesh, N., Kalam, M. A., Sonthalia, A., & Varuvel, E. G. (2023). Comprehensive study on using hydrogen-gasoline-ethanol blends as flexible fuels in an existing variable speed SI engine. International Journal of Hydrogen Energy, 48(99), 39531–39552. https://doi.org/10.1016/J.IJHYDENE.2023.03.107
Iodice, P., Langella, G., & Amoresano, A. (2018). Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions. Applied Thermal Engineering, 130, 1081–1089. https://doi.org/10.1016/J.APPLTHERMALENG.2017.11.090
Ismail, F. B., Al-Bazi, A., & Aboubakr, I. G. (2022). Numerical investigations on the performance and emissions of a turbocharged engine using an ethanol-gasoline blend. Case Studies in Thermal Engineering, 39, 102366. https://doi.org/10.1016/J.CSITE.2022.102366
Kaya, G. (2022). Experimental comparative study on combustion, performance and emissions characteristics of ethanol-gasoline blends in a two stroke uniflow gasoline engine. Fuel, 317, 120917. https://doi.org/10.1016/J.FUEL.2021.120917
Khoa, N. X. (2020). Estimation of parameters affected in internal exhaust residual gases recirculation and the influence of exhaust residual gas on performance and emission of a spark ignition engine. Applied Energy, 278. https://doi.org/10.1016/j.apenergy.2020.115699
Kirkpatrick, A. T. (2020). Internal Combustion Engines: Applied Thermosciences, Fourth Edition. Internal Combustion Engines: Applied Thermosciences, Fourth Edition, 1–635. https://doi.org/10.1002/9781119454564
Kumar, A. M. (2020). A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel. Renewable Energy, 146, 1781–1795. https://doi.org/10.1016/j.renene.2019.06.168
Kumara, R., & Singh, B. (2023). Performance Improvements of Power Converters for High Power Induction Motor Drive. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 100214. https://doi.org/10.1016/J.PRIME.2023.100214
Kunwer, R., Pasupuleti, S. R., Bhurat, S. S., Gugulothu, S. K., & Singh, D. (2022). Effect of ethanol-gasoline blend on spark ignition engine: A mini review. Materials Today: Proceedings, 69, 564–568. https://doi.org/10.1016/J.MATPR.2022.09.320
Li, A., Zheng, Z., & Peng, T. (2020). Effect of water injection on the knock, combustion, and emissions of a direct injection gasoline engine. Fuel, 268, 117376. https://doi.org/10.1016/J.FUEL.2020.117376
Li, B., Zhong, F., Wang, R., Jiang, Y., & Chen, Y. (2024). Experimental and numerical study on a SI engine fueled with gasohol and dissociated methanol gas blends at lean conditions. Energy, 292, 130540. https://doi.org/10.1016/J.ENERGY.2024.130540
Li, S. H., Wen, Z., Hou, J., Xi, S., Fang, P., Guo, X., Li, Y., Wang, Z., & Li, S. (2022). Effects of Ethanol and Methanol on the Combustion Characteristics of Gasoline with the Revised Variation Disturbance Method. ACS Omega, 7(21), 17797–17810. https://doi.org/10.1021/ACSOMEGA.2C00991/SUPPL_FILE/AO2C00991_SI_001.PDF
Li, Y., Lin, S., Huang, L., & Liu, J. (2024). A skeletal chemical reaction mechanism for gasoline-ABE blends combustion in internal combustion engine. Energy, 286, 129683. https://doi.org/10.1016/J.ENERGY.2023.129683
Lin, Z., Liu, S., Qi, Y., Chen, Q., & Wang, Z. (2024). Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel. Energy, 289, 129998. https://doi.org/10.1016/J.ENERGY.2023.129998
Mohammed, M. K. (2021). Effect of ethanol-gasoline blends on SI engine performance and emissions. Case Studies in Thermal Engineering, 25. https://doi.org/10.1016/j.csite.2021.100891
Mohammed Shahinsha, N., John, J. A., Singh, K., & Kumar, N. (2023). Reduction in automotive emissions by ethanol blending in SI engine: A review. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.03.808
Mourad, M., & Mahmoud, K. (2019). Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends. Renewable Energy, 143, 762–771. https://doi.org/10.1016/J.RENENE.2019.05.064
Nanlohy, H. Y., Riupassa, H., Mini, M., Taba, H. T., Katjo, B., Nanulaitta, N. J. M., & Yamaguchi, M. (2022). Performance and Emissions Analysis of BE85-Gasoline Blends on Spark Ignition Engine. Automotive Experiences, 5(1), 40–48. https://doi.org/10.31603/AE.6116
Obhuo, M., Okuma, S. O., & Aziaka, D. S. (2023). The Impact of Compressor Degradation on The Optimized Fleet Compositions, Optimized Thermal Efficiencies, and The Operations & Maintenance Cost of Fleets of a Reheat Engine Running on Associated Gas Fuel. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 618–632. https://doi.org/10.37385/JAETS.V4I2.1063
Örs, ?., Yelbey, S., Gülcan, H. E., Say?n Kul, B., & Ciniviz, M. (2023). Evaluation of detailed combustion, energy and exergy analysis on ethanol-gasoline and methanol-gasoline blends of a spark ignition engine. Fuel, 354, 129340. https://doi.org/10.1016/J.FUEL.2023.129340
Pirmana, V., Salsiah Alisjahbana, A., Yusuf, A. A., Hoekstra, R., & Tukker, A. (2020). Environmental costs assessment for improved environmental-economic account for Indonesia. https://doi.org/10.1016/j.jclepro.2020.124521
Puglia, M., Morselli, N., Iranzo, A., & Elfasakhany, A. (2023). Comparative Analysis of the Engine Performance and Emissions Characteristics Powered by Various Ethanol–Butanol–Gasoline Blends. Processes 2023, Vol. 11, Page 1264, 11(4), 1264. https://doi.org/10.3390/PR11041264
Purwanto, W., Su, J. C. T., Rochman, M. L., Waluyo, B., Krismadinata, & Arif, A. (2023). Study on the Addition of A Swirling Vane to Spark Ignition Engines Fueled by Gasoline and Gasoline-Ethanol. Automotive Experiences, 6(1), 162–172. https://doi.org/10.31603/ae.7981
Sakai, S., & Rothamer, D. (2022). Relative particle emission tendencies of 2-methyl-3-buten-2-ol–gasoline, isobutanol–gasoline, and ethanol–gasoline blends from premixed combustion in a spark-ignition engine. Fuel, 324, 124638. https://doi.org/10.1016/J.FUEL.2022.124638
Setiyo, M. (2021). The concise latest report on the advantages and disadvantages of pure biodiesel (B100) on engine performance: literature review and bibliometric analysis. In Indonesian Journal of Science and Technology (Vol. 6, Issue 3, pp. 469–490). https://doi.org/10.17509/ijost.v6i3.38430
Setiyo, M., Saifudin, S., Jamin, A. W., Nugroho, R., & Karmiadji, D. W. (2018). The effect of ethanol on fuel tank corrosion rate. Jurnal Teknologi, 80(6), 2180–3722. https://doi.org/10.11113/JT.V80.12324
Shetty, S., & Shrinivasa Rao, B. R. (2022). In-cylinder pressure based combustion analysis of cycle-by-cycle variations in a dual spark plug SI engine using ethanol-gasoline blends as a fuel. Materials Today: Proceedings, 52, 780–786. https://doi.org/10.1016/J.MATPR.2021.10.148
Sidoarjo, U. M., Putra Permadi, R., & Widodo, E. (2021). The The Effect of Modified Air Filters to Improve Performance of Matic Motorcycles 110 cc. Procedia of Engineering and Life Science, 1(1). https://doi.org/10.21070/PELS.V1I1.648
Suresh, D., & Porpatham, E. (2023). Influence of high compression ratio and hydrogen addition on the performance and emissions of a lean burn spark ignition engine fueled by ethanol-gasoline. International Journal of Hydrogen Energy, 48(38), 14433–14448. https://doi.org/10.1016/J.IJHYDENE.2022.12.275
Tamam, M. Q. M., Abdullah, N. R., Yahya, W. J., Kadir, H. A., Putrasari, Y., & Ahmad, M. A. (2021). Effects of Ethanol Blending with Methanol-Gasoline fuel on Spark Ignition Engine Performance and Emissions. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 83(2), 54–72. https://doi.org/10.37934/ARFMTS.83.2.5472
Verma, A., Dugala, N. S., & Singh, S. (2022). Experimental investigations on the performance of SI engine with Ethanol-Premium gasoline blends. Materials Today: Proceedings, 48, 1224–1231. https://doi.org/10.1016/J.MATPR.2021.08.255
Woo, S., & Lee, K. (2023). Effect of injection strategy and water content on water emulsion fuel engine for low pollutant compression ignition engines. Fuel, 343, 127809. https://doi.org/10.1016/J.FUEL.2023.127809
Zhao, H. C., Wang, S. B., Yu, T. Z., & Sun, P. (2023). Study on combustion and emissions characteristics of acetone-butanol-Ethanol(ABE)/gasoline premixed fuel in CISI engines. Case Studies in Thermal Engineering, 51, 103591. https://doi.org/10.1016/J.CSITE.2023.103591
Zhou, Z., Lu, C., Tan, Q., Shang, Y., Deng, Y., Liu, H., Song, D., Zhou, X., Zhang, X., & Jiang, X. (2022). Impacts of applying ethanol blended gasoline and evaporation emission control to motor vehicles in a megacity in southwest China. Atmospheric Pollution Research, 13(5), 101378. https://doi.org/10.1016/J.APR.2022.101378