Lung Nodule Detection For CT-Guided Biopsy Images Using Deep Learning
DOI:
https://doi.org/10.37385/jaets.v5i2.3716Keywords:
Convolutional Neural Network, Deep Learning Technique, Lung Tumor Stages, Benign and Malignancy Lesions Specification, Lung Cancer PredicationAbstract
The recent advancements in artificial intelligence enhance the detection and classification of lung nodules via computed tomography scans, addressing the critical need for early diagnosis of lung cancer. The lung cancer when identified at the earlier stages, the chance of survival is higher. The methodology encompasses a modern deep-learning approach applied to a private dataset obtained from the Barnard Institute of Radiology at Madras Medical College, Chennai, which has been granted ethical approval. The results from applying the proposed Convolutional Neural Network model are promising, with an accuracy of 99.3% in malignancy detection, signifying a notable advancement in the precise diagnosis of lung cancer through non-invasive imaging techniques. Beyond academia, the findings of this study have significant implications for real-world healthcare settings. By providing a reliable and automated solution for lung nodule detection, this research contributes to early diagnosis and personalized treatment strategies for lung cancer patients. The value of the present work lies in its potential to reduce morbidity through the early detection of lung cancer, thus contributing to both clinical practice and the ongoing development of AI applications in healthcare. Our research may serve as a model for further studies in digital health care at Madras Medical College, aiming to improve patient outcomes through technology-driven diagnostics.
Downloads
References
Abd Al-Ameer, A. A., Hussien, G. A., & Al Ameri, H. A. (2022). Lung cancer detection using image processing and deep learning. Indonesian Journal of Electrical Engineering and Computer Science, 28(2), 987–993. https://doi.org/10.11591/ijeecs.v28.i2.pp987-993
Agarwala, S., Kale, M., Kumar, D., Swaroop, R., Kumar, A., Dhara, A. K., Thakur, S. B., Sadhu, A., & Nandi, D. (2020). Deep learning for screening of interstitial lung disease patterns in high-resolution CT images. Clinical Radiology, 2020, 1–8. https://doi.org/10.1016/j.crad.2020.01.010
Alakwaa, W., Nassef, M., & Badr, A. (2017). Lung Cancer Detection and Classification with 3D Convolutional Neural Network (3D-CNN). In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 8, Issue 8).
Alemayehu, A., Wassie, L., Neway, S., Ayele, S., Assefa, A., Bobosha, K., Petros, B., & Howe, R. (2024). Clinical and Imaging Characteristics of Smear Negative Pulmonary Tuberculosis Patients: A Comparative Study. Pulmonary Medicine, 2024, 1–8. https://doi.org/10.1155/2024/2182088
Badura, P., & Pietka, E. (2014). Soft computing approach to 3D lung nodule segmentation in CT. Computers in Biology and Medicine, 53, 230–243. https://doi.org/10.1016/j.compbiomed.2014.08.005
Chen, C., Xiao, R., Zhang, T., Lu, Y., Guo, X., Wang, J., Chen, H., & Wang, Z. (2021). Computer Methods and Programs in Biomedicine Pathological lung segmentation in chest CT images based on improved random walker. Computer Methods and Programs in Biomedicine, 200, 105864. https://doi.org/10.1016/j.cmpb.2020.105864
Chu, Z. G., Zhang, Y., Li, W. J., Li, Q., Zheng, Y. N., & Lv, F. J. (2019). Primary solid lung cancerous nodules with different sizes: Computed tomography features and their variations. BMC Cancer, 19(1). https://doi.org/10.1186/s12885-019-6274-0
Dhanagopal, R., Menaka, R., Suresh Kumar, R., Vasanth Raj, P. T., Debrah, E. L., & Pradeep, K. (2024). Channel-Boosted and Transfer Learning Convolutional Neural Network-Based Osteoporosis Detection from CT Scan, Dual X-Ray, and X-Ray Images. Journal of Healthcare Engineering, 2024. https://doi.org/10.1155/2024/3733705
Dutande, P., Baid, U., & Talbar, S. (2021). Biomedical Signal Processing and Control LNCDS?: A 2D-3D cascaded CNN approach for lung nodule classification , detection and segmentation ?. Biomedical Signal Processing and Control, 67(March), 102527. https://doi.org/10.1016/j.bspc.2021.102527
Gao, X. W., James-Reynolds, C., & Currie, E. (2020). Analysis of tuberculosis severity levels from CT pulmonary images based on enhanced residual deep learning architecture. Neurocomputing, 392, 233–244. https://doi.org/10.1016/j.neucom.2018.12.086
Gedam, A. N., & Rumale, A. S. (2024). A Hybrid Optimization Approach for Pulmonary Nodules Segmentation and Classification using Deep CNN. EAI Endorsed Transactions on Pervasive Health and Technology, 10. https://doi.org/10.4108/eetpht.10.4855
Grd, P., Tomi?i?, I., & Bar?i?, E. (2024). Transfer Learning with EfficientNetV2S for Automatic Face Shape Classification. Journal of Universal Computer Science, 30(2), 153–178. https://doi.org/10.3897/jucs.104490
Gu, Y., Lu, X., Yang, L., Zhang, B., Yu, D., Zhao, Y., & Gao, L. (2018). Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. 103(May), 220–231. https://doi.org/10.1016/j.compbiomed.2018.10.011
Gupta, S., Garg, A., Bishnoi, V., & Goel, N. (2023). Pulmonary Nodules Binary Classification using CNN and LSTM. Proceedings of the 10th International Conference on Signal Processing and Integrated Networks, SPIN 2023, 174–179. https://doi.org/10.1109/SPIN57001.2023.10116430
Hatuwal, B. K., & Thapa, H. C. (2020). Lung Cancer Detection Using Convolutional Neural Network on Histopathological Images. International Journal of Computer Trends & Technology, 68(10), 21–24. https://doi.org/10.14445/22312803/ijctt-v68i10p104
Kanagaraj, K., & Priya, G. G. L. (2021). A new 3D convolutional neural network (3D-CNN) framework for multimedia event detection. Signal, Image and Video Processing, 15(4), 779–787. https://doi.org/10.1007/s11760-020-01796-z
Kumar, A. B., Chaitanya, S. M. K., & Lakshmidevi, N. (2022). Detection and diagnosis of lung cancer using region-based convolutional neural network model on computed tomography images. International Journal of Health Sciences, 4960–4975. https://doi.org/10.53730/ijhs.v6ns3.7000
Kuncan, M., Kaplan, K., Kaya, Y., Minaz, M. R., & Ertunç, H. M. (2024). Classification of CNC Vibration Speeds by Heralick Features. Journal of Universal Computer Science, 30(3), 363–382. https://doi.org/10.3897/jucs.106543
Makaju, S., Prasad, P. W. C., Alsadoon, A., Singh, A. K., & Elchouemi, A. (2018). ScienceDirect Procedia Computer Science Lung Cancer Detection using CT Scan Images. Procedia Computer Science, 125(2009), 107–114. https://doi.org/10.1016/j.procs.2017.12.016
Muñoz-Aseguinolaza, U., Sierra, B., & Aginako, N. (2023). Rotational Augmentation Techniques?: A New Perspective On Ensemble Learning For Image Classification.
Neal Joshua, E. S., Bhattacharyya, D., Chakkravarthy, M., & Byun, Y. C. (2021). 3D CNN with Visual Insights for Early Detection of Lung Cancer Using Gradient-Weighted Class Activation. Journal of Healthcare Engineering, 2021. https://doi.org/10.1155/2021/6695518
Prashanthi, B., & Angelin Claret, S. P. (2023). Lung Nodule Segmentation Using ResNodNet. AIP Conference Proceedings, 2946(1). https://doi.org/10.1063/5.0178020
Sad?ko?lu, E., Kösesoy, ?., & Gök, M. (2024). A Novel Data-Driven Attack Method on Machine Learning Models. Journal of Universal Computer Science, 30(3), 402–417. https://doi.org/10.3897/jucs.108445
Saleh, A. Y., Chin, C. K., Penshie, V., & Al-Absi, H. R. H. (2021). Lung cancer medical images classification using hybrid cnn-svm. International Journal of Advances in Intelligent Informatics, 7(2), 151–162. https://doi.org/10.26555/ijain.v7i2.317
Saya Sudhakar Babu, G Ashwini, & Dr. T. Ramashri. (2023). Automatic Benign and Malignant Classification of Pulmonary Nodules in Thoracic Computed Tomography Images based on CNN Algorithm. International Journal of Scientific Research in Science and Technology, 644–649. https://doi.org/10.32628/ijsrst52310340
Shaziya, H., & Kattula, S. (2022). LungNodNet-The CNN architecture for Detection and Classification of Lung Nodules in Pulmonary CT Images. INDICON 2022 - 2022 IEEE 19th India Council International Conference. https://doi.org/10.1109/INDICON56171.2022.10039935
Shen, Y., Zhang, Y., Guo, Y., Li, W., Huang, Y., Wu, T., Jiang, G., & Dai, J. (2021). Prognosis of lung cancer associated with cystic airspaces: A propensity score matching analysis. Lung Cancer, 159, 111–116. https://doi.org/10.1016/j.lungcan.2021.07.003
Singh, S. P., Wang, L., Gupta, S., Goli, H., Padmanabhan, P., & Gulyás, B. (2020). 3d deep learning on medical images: A review. In Sensors (Switzerland) (Vol. 20, Issue 18, pp. 1–24). MDPI AG. https://doi.org/10.3390/s20185097
Sivasankaran, P., & Dhanaraj, K. R. (2024). Lung Cancer Detection Using Image Processing Technique Through Deep Learning Algorithm. Revue d’Intelligence Artificielle, 38(1), 297–302. https://doi.org/10.18280/ria.380131
Stephen, E., Joshua, N., Bhattacharyya, D., Chakkravarthy, M., & Byun, Y. (2021). 3D CNN with Visual Insights for Early Detection of Lung Cancer Using Gradient-Weighted Class Activation. 2021.
Susritha, K., Sridhar, G., & Kumar, K. P. (2023). Lung Cancer Detection Using Cnn. Interantional Journal Of Scientific Research In Engineering And Management, 07(03). Https://Doi.Org/10.55041/Ijsrem18539
Tagnamas, J., Ramadan, H., Yahyaouy, A., & Tairi, H. (2024). Correction to: Multi-task approach based on combined CNN-transformer for efficient segmentation and classification of breast tumors in ultrasound images (Visual Computing for Industry, Biomedicine, and Art, (2024), 7, 1, (2), 10.1186/s42492-024-00155-w). In Visual Computing for Industry, Biomedicine, and Art (Vol. 7, Issue 1). Springer. https://doi.org/10.1186/s42492-024-00156-9
Tama, B. A., Vania, M., Kim, I., & Lim, S. (2022). An EfficientNet-Based Weighted Ensemble Model for Industrial Machine Malfunction Detection Using Acoustic Signals. IEEE Access, 10, 34625–34636. https://doi.org/10.1109/ACCESS.2022.3160179
Tomassini, S., Falcionelli, N., Bruschi, G., Sbrollini, A., Marini, N., Sernani, P., Morettini, M., Müller, H., Dragoni, A. F., & Burattini, L. (2023). On-cloud decision-support system for non-small cell lung cancer histology characterization from thorax computed tomography scans. Computerized Medical Imaging and Graphics, 110. https://doi.org/10.1016/j.compmedimag.2023.102310
Vasavi, CH., & Sruthi, N. D. (2023). Detection of Lung Cancer Using Optimized SVM-CNN Model. International Journal for Research in Applied Science and Engineering Technology, 11(6), 4608–4613. https://doi.org/10.22214/ijraset.2023.54496
Wang, Q., Shen, F., Shen, L., Huang, J., & Sheng, W. (2019). Lung Nodule Detection in CT Images Using a Raw Patch-Based Convolutional Neural Network. 971–979.
Wang, S., Dong, L., Wang, X., & Wang, X. (2020a). Classification of pathological types of lung cancer from CT images by deep residual neural networks with transfer learning strategy. Open Medicine (Poland), 15(1), 190–197. https://doi.org/10.1515/med-2020-0028
Wu, D., Wang, Y., Ma, H., Ai, L., Yang, J., Zhang, S., & Li, W. (2023). Adaptive feature extraction method for capsule endoscopy images. Visual Computing for Industry, Biomedicine, and Art, 6(1). https://doi.org/10.1186/s42492-023-00151-6
World Health Organization. (2020). Lung cancer. Retrieved from https://www.who.int/news-room/fact-sheets/detail/lung-cancer
Yuan, J., Liu, X., Hou, F., Qin, H., & Hao, A. (2018). Hybrid-feature-guided lung nodule type classification on CT images. Computers and Graphics (Pergamon), 70, 288–299. https://doi.org/10.1016/j.cag.2017.07.020
Zhang, C., Li, J., Huang, J., & Wu, S. (2021). Computed Tomography Image under Convolutional Neural Network Deep Learning Algorithm in Pulmonary Nodule Detection and Lung Function Examination. Journal of Healthcare Engineering, 2021. https://doi.org/10.1155/2021/3417285