Identification of Landslide Hazard in Residential Area Kubang Tangah District, Sawahlunto
DOI:
https://doi.org/10.37385/jaets.v5i2.3893Keywords:
Landslide, Residential, Kubang TangahAbstract
The residential area in Kubang Tangah, Sawahlunto, is an area that has the potential for significant landslide hazard. With rapid residential growth and environmental change, risks to the security and well-being of residents are becoming increasingly prominent. This research aims to identify factors that trigger landslide hazard and analyze potential risks in the residential context of Kubang Tangah. Analysis of regional geotechnical and topographic characteristics, land use modeling, and review of the impact of human activities on slope stability. The analysis method uses the Plaxis 2D program to obtain slope safety factors in the Kubang Tangah residential area, Sawahlunto. The research results show that residential areas in Kubang Tangah have a high level of landslide risk, influenced by slope, soil type, and changes in land use. Varying rainfall levels significantly contribute to the potential for landslide hazard. Mitigation recommendations are suggested to involve wise land use changes, strengthening infrastructure, and increasing public awareness of the dangers of landslides.
Downloads
References
Aprisal, Istijono, B., Ophiyandri, T., & Nurhamida. (2019). A Study Of The Quality Of Soil Infiltration at The Downstream of Kuranji River, Padang City. International Journal of GEOMATE, 16 (56), 16 -20. DOI: https://doi.org/10.21660/2019.56.4530.
Andriani, Putra, H. G, Masyril, S., & Sadewo, U. (2022). Effect of Slope on Landslide Potential at Kuranji Watershed. Eco. Env. & Cons. 28 (February Suppl. Issue), S99-S102. http://doi.org/10.53550/EEC.2022.v28i02s.016.
Andriani, A., Adji, B. M., & Ramadhani, S. (2023). The Analysis of Impact and Mitigation of Landslides Using Analytical Hierarchy Process (AHP) Method. Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering, Lecture Notes in Civil Engineering, 225, 454 – 463. https://doi.org/10.1007/978-981-16-9348-9_40.
Andriani, Rahmadani, T., Syuheri, B. R., & Syukur, M. (2023). Effect of physical environmental characteristics on landslide potential in Kuranji Watershed, Padang-West Sumatera. The 2nd International Conference on Disaster Mitigation and Management (2nd ICDMM 2023) in E3S Web Conferences, 464, 02010.
Baum, R. L., & Godt, J. W. (2010). Erratum to: Early Warning of Rainfall-Induced Shallow Landslides and Debris Flows in the USA. Landslides, 7, 387.
Bari, F., Repadi, J. A., Andriani, Ismail, F. A., & Hakam, A. (2021). Optimum height of the retaining gravity wall. IOP Conf. Series: Earth and Environmental Science, 708, 012020: https://doi:10.1088/1755-1315/708/1/012020.
Bari, F., Repadi, J. A., Andriani, Ismail, F. A., & Hakam, A. (2022). Optimal Cost Of Slope Stabilization With Retaining Wall. International Journal of GEOMATE, 22 (93), 83 - 90. DOI: https://doi.org/10.21660/2022.93.3129.
Crozier, M. J. (1986). Landslides - Causes, Consequences and Environment, Croom Helm, London 252.
Cruden, D. M., & Varnes, D. J. (1996). Landslides: Investigation and Mitigation. Transportation Research Board, Special Report 31.
Fashaho, A. G. M., Ndegwa, J. J., Lelei, A. O., Musandu, & Mwonga, S. M. (2020). Effect of Land Terracing on Soil Physical Properties Across Slope Positions and Profile Depths in Medium and High Altitude Regions of Rwanda. South African Journal of Plant and Soil, 37(2), 91 -100. https://DOI: 10.1080/02571862.2019.1665722.
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The Rainfall Intensity–Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides, 5, 3 – 17.
Hakam, A., & Istijono, B. (2016). West Sumatra Landslide During in 2012 to 2015. International Journal of Earth Sciences and Engineering, 09 (03), 289-293.
Hanafi, Putra, H. G., & Andriani .(2020). Sliding failure analysis of a gabion retaining wall at km 31+800 of Lubuk Selasih – Padang city border highway, Indonesia. E3S Web of Conferences 156, 02005 in 4th ICEEDM 2019. https://doi.org/10.1051/e3sconf/202015602005.
Istijono, B., Hakam, A., & Ophiyandri, T. (2016) Landslide hazard of Maninjau area. International Journal of Disaster Resilience in the Built Environment, 7(3), 302 -312. https://doi.org/10.1108/IJDRBE-04-2014-0027.
Latif, M., Andriani, A., & Hakam, A. (2023). Analysis of the Level and Distribution of Landslide Disasters in Central Bengkulu Regency (in bahasa: Analisis Tingkat dan Sebaran Bencana Tanah Longsor di Kabupaten Bengkulu Tengah). BENTANG: Jurnal Teoritis dan Terapan Bidang Rekayasa Sipil , 11 (2), 217-226.
L’Heureux, J.-S., Locat, A., Leroueil, S., Demers, D., & Locat, J. (Eds.). (2014). Landslides in Sensitive Clays. Advances in Natural and Technological Hazards Research. https://doi:10.1007/978-94-007-7079-9.
Marino, P., Peres, D. J., Cancelliere, A., Greco, R., & Bogaard, T. A. (2020). Soil Moisture Information Can Improve Shallow Landslide Forecasting Using the Hydrometeorological Threshold Approach. Landslides, 17, 2041–2054.
Noviyanto, A., Sartohadi, J., & Purwanto, B. H. (2020). The distribution of soil morphological characteristics for landslide-impacted Sumbing Volcano, Central Java - Indonesia. Journal of Geoenvironmental Disasters, 7(25), 1 - 19. https://doi.org/10.1186/s40677-020-00158-8
Repadi, J. A., Bari, F., Andriani, Ismail, F.A., & Hakam, A. (2022). A new slip surface in noncohesive slopes. IOP Conf. Series: Materials Science and Engineering, 1212, 012033. https://doi:10.1088/1757-899X/1212/1/012033.
Roccati, A., Faccini, F., Luino, F., Ciampalini, A., & Turconi, L. (2019). Heavy Rainfall Triggering Shallow Landslides: A Susceptibility Assessment by a GIS-Approach in a Ligurian Apennine Catchment (Italy). Water, 11, 605.
Segoni, S., Rosi, A., Rossi, G., Catani, F., & Casagli, N. (2014). Analysing the Relationship between Rainfalls and Landslides to Define a Mosaic of Triggering Thresholds for Regional-Scale Warning Systems. Nat. Hazards Earth Syst. Sci., 14, 2637–2648.
SNI 8460 (2017). Geotechnical Design Requirements (in bahasa: Persyaratan Perancangan Geoteknik).
Stanchi, S., Freppaz, M., Oberto, E., Caimi, A., & Zanini, E. (2008). Plastic and Liquid Limits in Alpine Soils: Methods of Measurement and Relations with Soil Properties. Adv. Geoecol., 39, 594–604.
Stanchi, S., Freppaz, M., & Zanini, E. (2012). The Influence of Alpine Soil Properties on Shallow Movement Hazards, Investigated through Factor Analysis. Nat. Hazards Earth Syst. Sci., 12, 1845–1854.
Tofani, V., Bicocchi, G., Rossi, G., Segoni, S., D’Ambrosio, M., Casagli, N., & Catani, F. (2017). Soil Characterization for Shallow Landslides Modeling: A Case Study in the Northern Apennines (Central Italy). Landslides, 14, 755–770.