Big Data Approach to Sentiment Analysis in Machine Learning-Based Microblogs: Perspectives of Religious Moderation Public Policy in Indonesia

Authors

  • Mhd. Furqan Universitas Islam Negeri Sumatera Utara
  • Ahmad Fakhri Ab. Nasir University Malaysia Pahang Al-Sultan Abdullah, Pekan, Malaysia

DOI:

https://doi.org/10.37385/jaets.v5i2.4498

Keywords:

Religious Moderation, Sentiment Analysis, Microblogs, Big Data

Abstract

The concept of religious moderation encompasses three key aspects, namely moderate thinking and understanding, moderate behavior, and moderate religious worship. With advancements in information technology, people now have the means to express their opinions through microblogs, pertaining to issues of religious moderation initiated by the Ministry of Religion of Indonesia. This study aims to evaluate public policies introduced by the Ministry of Religion regarding religious moderation such as changes in the halal logo, transfer of authority for halal certification, and regulations on the volume of loudspeakers in the mosque. Public opinions collected as the big data to get the information about public sentiment with those issues. Sentiment analysis was conducted on three primary microblogs such as Twitter, Instagram and YouTube using six machine learning algorithms. These include Naïve Bayes, Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Bagging Classifier, Random Forest, and Gradient Boosting Classifier. The test results showed the highest accuracy is Gradient Boosting reached 82.27%.

Downloads

Download data is not yet available.

References

Akhmadi, A. (2008). Moderasi Beragama dalam Keragaman Indonesia. Jurnal Diklat Keagamaan, 13(2), 45–55. https://bdksurabaya.e-journal.id/bdksurabaya/article/view/82

Arifinsyah. (2020). The Urgency of Religious Moderation in Preventing Radicalism in Indonesia. ESENSIA, 21(1). https://doi.org/10.14421/esensia.v21i1.2199

Asif, M. (2020). Sentiment analysis of extremism in social media from textual information. Telematics and Informatics, 48. https://doi.org/10.1016/j.tele.2020.101345

Azhar, Masruroh, S. U., Wardhani, L. K., & Okfalisa. (2019). Perbandingan Kinerja Algoritma Naive Bayes dan K-NN Pendekatan Lexicon pada Analisis Sentimen di Media Twitter. Seminar Nasional Fisika Universitas Riau IV (SNFUR-4), 1–6. https://snf.fmipa.unri.ac.id/wp-content/uploads/2019/09/25.-OFMI-3011.pdf

Badan Litbang Dan Diklat Kementerian Agama RI. (2020). Religious Moderation. Kementerian Agama RI.

Barghout, L. (2015). Spatial-Taxon Information Granules as Used in Iterative Fuzzy-Decision-Making for Image Segmentation. Granular Computing and Decision-Making, 10, 285–318. https://doi.org/10.1007/978-3-319-16829-6_12

Ben-Hur, A., Horn, D., Siegelmann, H., & Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2, 125–137. https://doi.org/10.1162/15324430260185565

Bifet, A., & Eibe, F. (2010). Sentiment knowledge discovery in twitter streaming data. In Discovery Science, 1–15. https://doi.org/10.1007/978-3-642-16184-1_1

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. http://dx.doi.org/10.1007/BF00058655

Breiman, L. (1999). Pasting small votes for classification in large databases and on-line. Machine Learning, 36(1), 85–103. https://doi.org/10.1023/A:1007563306331

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010950718922

Brown, P. F., Desouza, P. V, Mercer, R. L., Pietra, V., & Lai, J. C. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18(2), 467–479. https://aclanthology.org/J92-4003.pdf

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273. https://doi.org/10.1023/A:1022627411411

Cuingnet, R., Rosso, C., Chupin, M., Lehéricy, S., Dormont, D., Benali, H., Samson, Y., & Colliot, O. (2011). Spatial regularization of SVM for the detection of diffusion alterations associated with stroke outcome. Medical Image Analysis, 15(5), 729–737. https://doi.org/10.1016/j.media.2011.05.007

Davids, N. (2017). Islam, Moderation, Radicalism, and Justly Balanced Communities. Journal of Muslim Minority Affairs, 37(3), 309–320. https://doi.org/10.1080/13602004.2017.1384672

DeCoste, D. (2002). Training Invariant Support Vector Machines. Machine Learning, 46, 161–190. https://doi.org/10.1023/A:1012454411458

Feldman, R., & James, S. (2007). The Text Mining Handbook. Cambridge. https://doi.org/10.1017/CBO9780511546914

Gaonkar, B., & Davatzikos, C. (2013). Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. NeuroImage, 78, 270–283. https://doi.org/10.1016/j.neuroimage.2013.03.066

Gunther, T. (2013). Sentiment Analysis of Microblogs. https://www.researchgate.net/publication/258521310_Sentiment_Analysis_of_Microblogs

Hanapi, M. S. (2014). The Wasatiyah (Moderation) Concept in Islamic Epistemology: A Case Study of Its Implementation in Malaysia. International Journal of Humanities and Social Science, 4(9), 51–62. https://doi.org/10.5901/mjss.2015.v6n4s2p66

Ho, T. (1998). The random subspace method for constructing decision forests. Pattern Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org/10.1109/34.709601

Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. Machine Learning, 1398, 137–142. https://doi.org/10.17877/DE290R-5097

Khan, M., & Malviya, A. (2021). Big Data Approach for Sentiment Analysis of Twitter Data using Hadoop Framework and Deep Learning. Emerging Trends in Information Technology and Engineering. https://doi.org/10.1109/ic-ETITE47903.2020.201

Kumar, A., & Sebastian, T. M. (2012). Sentiment analysis on twitter. IJCSI International Journal of Computer Science Issues, 9(3), 372–378. https://dx.doi.org/10.2139/ssrn.3920078

Kurniasari, I., Kusrini, & Al-Fatta, H. (2020). Analisis Sentimen Komentar Facebook Berbasis Lexicon dan Support Vector Machine. Jurnal Sains Dan Teknologi, 40–44. https://ejournal.unwaha.ac.id/index.php/saintek/article/download/855/545/2208

Lineck, S. (2017). It’s All About Informatioan? The Following Behaviour of Professor and Ph.D Students in Computer on Twitter. The Journal of Web Sciences, 3(1), 1–15. https://10.1561/106.00000008

Liu, B. (2012). Sentiment Analysis and Subjectivity. Graeme Hirst Morgan & Claypool Publisher. https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf

Liu, B. (2016). Sentiment Analysis and Opinion Mining. Graeme Hirst Morgan & Claypool Publisher. https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf

Liu, K., Li, W., & Goo, M. (2012). Emoticon smoothed language models for twitter sentiment analysis. In Twenty-Sixth AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v26i1.8353

Louppe, G., & Geurts, P. (2012). Ensembles on Random Patches. Machine Learning and Knowledge Discovery in Databases, 346–361. https://doi.org/10.1007/978-3-642-33460-3_28

Maitra, D. S., Bhattacharya, U., & Parui, S. K. (2015). CNN based common approach to handwritten character recognition of multiple scripts. 13th International Conference on Document Analysis and Recognition (ICDAR). https://doi.org/10.1109/ICDAR.2015.7333916

Maity, A. (2016). Supervised Classification of RADARSAT-2 Polarimetric Data for Different Land Features. https://doi.org/10.5281/zenodo.832427

Matsumoto, S., Takamura, H., & Okumura, M. (2005). Sentiment classification using word sub-sequences and dependency sub-trees. In Advances in Knowledge Discovery and Data Mining, 301–311. https://doi.org/10.1007/11430919_37

Neethu, M., & Rajasree, R. (2013). Sentiment Analysis in Twitter using Machine Learning Techniques. International Conference on Computing, Communications and Networking Technologies. https://doi.org/10.1109/ICCCNT.2013.6726818

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1), 135. https://doi.org/10.1561/1500000011

Purwidiantoro, M. H., & F, K. D. (2018). Pengaruh Penggunaan Media Sosial Terhadap Pengembangan Usaha Kecil Menengah (UKM). Ekacida, 1(1), 31. https://journal.amikomsolo.ac.id/index.php/ekacida/article/download/19/11

Rizki, M. M. (2019). Analisis Sentimen Terhadap Produk Otomotif dari Twitter Menggunakan Kombinasi Algoritma K-Nearest Neighbor dan Pendekatan Lexicon (Studi Kasus?: Mobil Toyota). Universitas Islam Negeri Syarif Hidayatullah. https://repository.uinjkt.ac.id/dspace/bitstream/123456789/48643/1/MAHDI%20MUHAMMAD%20RIZKI-FST.pdf

Sari, A., & Bador. (2022). Sentiment analysis for cruises in Saudi Arabia on social media platforms using machine learning algorithms. Journal of Big Data, 9, 21. https://doi.org/10.1186/s40537-022-00568-5

Sari, R. (2020). Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-NN). Evolusi?: Jurnal Sains Dan Manajemen, 10–17. https://doi.org/10.31294/evolusi.v8i1.7371

Setia, P., & Rahman, M. T. (2022). Socializing Religious Moderation and Peace in the Indonesian Lanscape. Jurnal Iman Dan Spiritualitas, 2(3), 333–340. https://doi.org/10.15575/jis.v2i3.17916

Statnikov, A., Hardin, D., & Aliferis, C. (2006). Using SVM weight-based methods to identify causally relevant and non-causally relevant variables. http://ccdlab.org/paper-pdfs/NIPS_2006.pdf

Sudradat, T., Supiana, & Zakiah, Q. Y. (2021). Higher Education, Nation Character, and Religious Moderation Program: A Public Policy Perspective. Journal of Asian Social Science Research, 3(1), 73–92. https://doi.org/10.15575/jassr.v3i1.35

Tim Kelompok Kerja Moderasi Beragama Kementerian Agama RI. (2020). Peta Jalan (Roadmap) Penguatan Moderasi Beragama Tahun 2020-2024. Kementerian Agama RI.

Vapnik, V. (2014). Invited Speaker. Information Processing and Management.

Yaakub, M. B., Othman, K., & Nazi, N. (2019). Islamic Moderation (wasatiyah) Manifestation of Practices: An Elaboration of Its Degree of Effectiveness. Humanities and Social Sciences Reviews, 7(1), 171–179. https://doi.org/10.18510/hssr.2019.7121

Zou, X., Yang, J., & Zhang, J. (2018). Microblog Sentiment Analysis using Social and Topic Context. https://doi.org/10.1371/journal.pone.0191163

Downloads

Published

2024-06-06

How to Cite

Furqan, M., & Nasir, A. F. A. (2024). Big Data Approach to Sentiment Analysis in Machine Learning-Based Microblogs: Perspectives of Religious Moderation Public Policy in Indonesia. Journal of Applied Engineering and Technological Science (JAETS), 5(2), 955–965. https://doi.org/10.37385/jaets.v5i2.4498