Big Data Approach to Sentiment Analysis in Machine Learning-Based Microblogs: Perspectives of Religious Moderation Public Policy in Indonesia


  • Mhd. Furqan Universitas Islam Negeri Sumatera Utara
  • Ahmad Fakhri Ab. Nasir University Malaysia Pahang Al-Sultan Abdullah, Pekan, Malaysia



Religious Moderation, Sentiment Analysis, Microblogs, Big Data


The concept of religious moderation encompasses three key aspects, namely moderate thinking and understanding, moderate behavior, and moderate religious worship. With advancements in information technology, people now have the means to express their opinions through microblogs, pertaining to issues of religious moderation initiated by the Ministry of Religion of Indonesia. This study aims to evaluate public policies introduced by the Ministry of Religion regarding religious moderation such as changes in the halal logo, transfer of authority for halal certification, and regulations on the volume of loudspeakers in the mosque. Public opinions collected as the big data to get the information about public sentiment with those issues. Sentiment analysis was conducted on three primary microblogs such as Twitter, Instagram and YouTube using six machine learning algorithms. These include Naïve Bayes, Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Bagging Classifier, Random Forest, and Gradient Boosting Classifier. The test results showed the highest accuracy is Gradient Boosting reached 82.27%.


Download data is not yet available.


Akhmadi, A. (2008). Moderasi Beragama dalam Keragaman Indonesia. Jurnal Diklat Keagamaan, 13(2), 45–55.

Arifinsyah. (2020). The Urgency of Religious Moderation in Preventing Radicalism in Indonesia. ESENSIA, 21(1).

Asif, M. (2020). Sentiment analysis of extremism in social media from textual information. Telematics and Informatics, 48.

Azhar, Masruroh, S. U., Wardhani, L. K., & Okfalisa. (2019). Perbandingan Kinerja Algoritma Naive Bayes dan K-NN Pendekatan Lexicon pada Analisis Sentimen di Media Twitter. Seminar Nasional Fisika Universitas Riau IV (SNFUR-4), 1–6.

Badan Litbang Dan Diklat Kementerian Agama RI. (2020). Religious Moderation. Kementerian Agama RI.

Barghout, L. (2015). Spatial-Taxon Information Granules as Used in Iterative Fuzzy-Decision-Making for Image Segmentation. Granular Computing and Decision-Making, 10, 285–318.

Ben-Hur, A., Horn, D., Siegelmann, H., & Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2, 125–137.

Bifet, A., & Eibe, F. (2010). Sentiment knowledge discovery in twitter streaming data. In Discovery Science, 1–15.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

Breiman, L. (1999). Pasting small votes for classification in large databases and on-line. Machine Learning, 36(1), 85–103.

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.

Brown, P. F., Desouza, P. V, Mercer, R. L., Pietra, V., & Lai, J. C. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18(2), 467–479.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273.

Cuingnet, R., Rosso, C., Chupin, M., Lehéricy, S., Dormont, D., Benali, H., Samson, Y., & Colliot, O. (2011). Spatial regularization of SVM for the detection of diffusion alterations associated with stroke outcome. Medical Image Analysis, 15(5), 729–737.

Davids, N. (2017). Islam, Moderation, Radicalism, and Justly Balanced Communities. Journal of Muslim Minority Affairs, 37(3), 309–320.

DeCoste, D. (2002). Training Invariant Support Vector Machines. Machine Learning, 46, 161–190.

Feldman, R., & James, S. (2007). The Text Mining Handbook. Cambridge.

Gaonkar, B., & Davatzikos, C. (2013). Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. NeuroImage, 78, 270–283.

Gunther, T. (2013). Sentiment Analysis of Microblogs.

Hanapi, M. S. (2014). The Wasatiyah (Moderation) Concept in Islamic Epistemology: A Case Study of Its Implementation in Malaysia. International Journal of Humanities and Social Science, 4(9), 51–62.

Ho, T. (1998). The random subspace method for constructing decision forests. Pattern Analysis and Machine Intelligence, 20(8), 832–844.

Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. Machine Learning, 1398, 137–142.

Khan, M., & Malviya, A. (2021). Big Data Approach for Sentiment Analysis of Twitter Data using Hadoop Framework and Deep Learning. Emerging Trends in Information Technology and Engineering.

Kumar, A., & Sebastian, T. M. (2012). Sentiment analysis on twitter. IJCSI International Journal of Computer Science Issues, 9(3), 372–378.

Kurniasari, I., Kusrini, & Al-Fatta, H. (2020). Analisis Sentimen Komentar Facebook Berbasis Lexicon dan Support Vector Machine. Jurnal Sains Dan Teknologi, 40–44.

Lineck, S. (2017). It’s All About Informatioan? The Following Behaviour of Professor and Ph.D Students in Computer on Twitter. The Journal of Web Sciences, 3(1), 1–15. https://10.1561/106.00000008

Liu, B. (2012). Sentiment Analysis and Subjectivity. Graeme Hirst Morgan & Claypool Publisher.

Liu, B. (2016). Sentiment Analysis and Opinion Mining. Graeme Hirst Morgan & Claypool Publisher.

Liu, K., Li, W., & Goo, M. (2012). Emoticon smoothed language models for twitter sentiment analysis. In Twenty-Sixth AAAI Conference on Artificial Intelligence.

Louppe, G., & Geurts, P. (2012). Ensembles on Random Patches. Machine Learning and Knowledge Discovery in Databases, 346–361.

Maitra, D. S., Bhattacharya, U., & Parui, S. K. (2015). CNN based common approach to handwritten character recognition of multiple scripts. 13th International Conference on Document Analysis and Recognition (ICDAR).

Maity, A. (2016). Supervised Classification of RADARSAT-2 Polarimetric Data for Different Land Features.

Matsumoto, S., Takamura, H., & Okumura, M. (2005). Sentiment classification using word sub-sequences and dependency sub-trees. In Advances in Knowledge Discovery and Data Mining, 301–311.

Neethu, M., & Rajasree, R. (2013). Sentiment Analysis in Twitter using Machine Learning Techniques. International Conference on Computing, Communications and Networking Technologies.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1), 135.

Purwidiantoro, M. H., & F, K. D. (2018). Pengaruh Penggunaan Media Sosial Terhadap Pengembangan Usaha Kecil Menengah (UKM). Ekacida, 1(1), 31.

Rizki, M. M. (2019). Analisis Sentimen Terhadap Produk Otomotif dari Twitter Menggunakan Kombinasi Algoritma K-Nearest Neighbor dan Pendekatan Lexicon (Studi Kasus?: Mobil Toyota). Universitas Islam Negeri Syarif Hidayatullah.

Sari, A., & Bador. (2022). Sentiment analysis for cruises in Saudi Arabia on social media platforms using machine learning algorithms. Journal of Big Data, 9, 21.

Sari, R. (2020). Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-NN). Evolusi?: Jurnal Sains Dan Manajemen, 10–17.

Setia, P., & Rahman, M. T. (2022). Socializing Religious Moderation and Peace in the Indonesian Lanscape. Jurnal Iman Dan Spiritualitas, 2(3), 333–340.

Statnikov, A., Hardin, D., & Aliferis, C. (2006). Using SVM weight-based methods to identify causally relevant and non-causally relevant variables.

Sudradat, T., Supiana, & Zakiah, Q. Y. (2021). Higher Education, Nation Character, and Religious Moderation Program: A Public Policy Perspective. Journal of Asian Social Science Research, 3(1), 73–92.

Tim Kelompok Kerja Moderasi Beragama Kementerian Agama RI. (2020). Peta Jalan (Roadmap) Penguatan Moderasi Beragama Tahun 2020-2024. Kementerian Agama RI.

Vapnik, V. (2014). Invited Speaker. Information Processing and Management.

Yaakub, M. B., Othman, K., & Nazi, N. (2019). Islamic Moderation (wasatiyah) Manifestation of Practices: An Elaboration of Its Degree of Effectiveness. Humanities and Social Sciences Reviews, 7(1), 171–179.

Zou, X., Yang, J., & Zhang, J. (2018). Microblog Sentiment Analysis using Social and Topic Context.




How to Cite

Furqan, M., & Nasir, A. F. A. (2024). Big Data Approach to Sentiment Analysis in Machine Learning-Based Microblogs: Perspectives of Religious Moderation Public Policy in Indonesia. Journal of Applied Engineering and Technological Science (JAETS), 5(2), 955–965.