Big Data Approach to Sentiment Analysis in Machine Learning-Based Microblogs: Perspectives of Religious Moderation Public Policy in Indonesia
DOI:
https://doi.org/10.37385/jaets.v5i2.4498Keywords:
Religious Moderation, Sentiment Analysis, Microblogs, Big DataAbstract
The concept of religious moderation encompasses three key aspects, namely moderate thinking and understanding, moderate behavior, and moderate religious worship. With advancements in information technology, people now have the means to express their opinions through microblogs, pertaining to issues of religious moderation initiated by the Ministry of Religion of Indonesia. This study aims to evaluate public policies introduced by the Ministry of Religion regarding religious moderation such as changes in the halal logo, transfer of authority for halal certification, and regulations on the volume of loudspeakers in the mosque. Public opinions collected as the big data to get the information about public sentiment with those issues. Sentiment analysis was conducted on three primary microblogs such as Twitter, Instagram and YouTube using six machine learning algorithms. These include Naïve Bayes, Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Bagging Classifier, Random Forest, and Gradient Boosting Classifier. The test results showed the highest accuracy is Gradient Boosting reached 82.27%.
Downloads
References
Akhmadi, A. (2008). Moderasi Beragama dalam Keragaman Indonesia. Jurnal Diklat Keagamaan, 13(2), 45–55. https://bdksurabaya.e-journal.id/bdksurabaya/article/view/82
Arifinsyah. (2020). The Urgency of Religious Moderation in Preventing Radicalism in Indonesia. ESENSIA, 21(1). https://doi.org/10.14421/esensia.v21i1.2199
Asif, M. (2020). Sentiment analysis of extremism in social media from textual information. Telematics and Informatics, 48. https://doi.org/10.1016/j.tele.2020.101345
Azhar, Masruroh, S. U., Wardhani, L. K., & Okfalisa. (2019). Perbandingan Kinerja Algoritma Naive Bayes dan K-NN Pendekatan Lexicon pada Analisis Sentimen di Media Twitter. Seminar Nasional Fisika Universitas Riau IV (SNFUR-4), 1–6. https://snf.fmipa.unri.ac.id/wp-content/uploads/2019/09/25.-OFMI-3011.pdf
Badan Litbang Dan Diklat Kementerian Agama RI. (2020). Religious Moderation. Kementerian Agama RI.
Barghout, L. (2015). Spatial-Taxon Information Granules as Used in Iterative Fuzzy-Decision-Making for Image Segmentation. Granular Computing and Decision-Making, 10, 285–318. https://doi.org/10.1007/978-3-319-16829-6_12
Ben-Hur, A., Horn, D., Siegelmann, H., & Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2, 125–137. https://doi.org/10.1162/15324430260185565
Bifet, A., & Eibe, F. (2010). Sentiment knowledge discovery in twitter streaming data. In Discovery Science, 1–15. https://doi.org/10.1007/978-3-642-16184-1_1
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. http://dx.doi.org/10.1007/BF00058655
Breiman, L. (1999). Pasting small votes for classification in large databases and on-line. Machine Learning, 36(1), 85–103. https://doi.org/10.1023/A:1007563306331
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010950718922
Brown, P. F., Desouza, P. V, Mercer, R. L., Pietra, V., & Lai, J. C. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18(2), 467–479. https://aclanthology.org/J92-4003.pdf
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273. https://doi.org/10.1023/A:1022627411411
Cuingnet, R., Rosso, C., Chupin, M., Lehéricy, S., Dormont, D., Benali, H., Samson, Y., & Colliot, O. (2011). Spatial regularization of SVM for the detection of diffusion alterations associated with stroke outcome. Medical Image Analysis, 15(5), 729–737. https://doi.org/10.1016/j.media.2011.05.007
Davids, N. (2017). Islam, Moderation, Radicalism, and Justly Balanced Communities. Journal of Muslim Minority Affairs, 37(3), 309–320. https://doi.org/10.1080/13602004.2017.1384672
DeCoste, D. (2002). Training Invariant Support Vector Machines. Machine Learning, 46, 161–190. https://doi.org/10.1023/A:1012454411458
Feldman, R., & James, S. (2007). The Text Mining Handbook. Cambridge. https://doi.org/10.1017/CBO9780511546914
Gaonkar, B., & Davatzikos, C. (2013). Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification. NeuroImage, 78, 270–283. https://doi.org/10.1016/j.neuroimage.2013.03.066
Gunther, T. (2013). Sentiment Analysis of Microblogs. https://www.researchgate.net/publication/258521310_Sentiment_Analysis_of_Microblogs
Hanapi, M. S. (2014). The Wasatiyah (Moderation) Concept in Islamic Epistemology: A Case Study of Its Implementation in Malaysia. International Journal of Humanities and Social Science, 4(9), 51–62. https://doi.org/10.5901/mjss.2015.v6n4s2p66
Ho, T. (1998). The random subspace method for constructing decision forests. Pattern Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org/10.1109/34.709601
Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. Machine Learning, 1398, 137–142. https://doi.org/10.17877/DE290R-5097
Khan, M., & Malviya, A. (2021). Big Data Approach for Sentiment Analysis of Twitter Data using Hadoop Framework and Deep Learning. Emerging Trends in Information Technology and Engineering. https://doi.org/10.1109/ic-ETITE47903.2020.201
Kumar, A., & Sebastian, T. M. (2012). Sentiment analysis on twitter. IJCSI International Journal of Computer Science Issues, 9(3), 372–378. https://dx.doi.org/10.2139/ssrn.3920078
Kurniasari, I., Kusrini, & Al-Fatta, H. (2020). Analisis Sentimen Komentar Facebook Berbasis Lexicon dan Support Vector Machine. Jurnal Sains Dan Teknologi, 40–44. https://ejournal.unwaha.ac.id/index.php/saintek/article/download/855/545/2208
Lineck, S. (2017). It’s All About Informatioan? The Following Behaviour of Professor and Ph.D Students in Computer on Twitter. The Journal of Web Sciences, 3(1), 1–15. https://10.1561/106.00000008
Liu, B. (2012). Sentiment Analysis and Subjectivity. Graeme Hirst Morgan & Claypool Publisher. https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf
Liu, B. (2016). Sentiment Analysis and Opinion Mining. Graeme Hirst Morgan & Claypool Publisher. https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf
Liu, K., Li, W., & Goo, M. (2012). Emoticon smoothed language models for twitter sentiment analysis. In Twenty-Sixth AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v26i1.8353
Louppe, G., & Geurts, P. (2012). Ensembles on Random Patches. Machine Learning and Knowledge Discovery in Databases, 346–361. https://doi.org/10.1007/978-3-642-33460-3_28
Maitra, D. S., Bhattacharya, U., & Parui, S. K. (2015). CNN based common approach to handwritten character recognition of multiple scripts. 13th International Conference on Document Analysis and Recognition (ICDAR). https://doi.org/10.1109/ICDAR.2015.7333916
Maity, A. (2016). Supervised Classification of RADARSAT-2 Polarimetric Data for Different Land Features. https://doi.org/10.5281/zenodo.832427
Matsumoto, S., Takamura, H., & Okumura, M. (2005). Sentiment classification using word sub-sequences and dependency sub-trees. In Advances in Knowledge Discovery and Data Mining, 301–311. https://doi.org/10.1007/11430919_37
Neethu, M., & Rajasree, R. (2013). Sentiment Analysis in Twitter using Machine Learning Techniques. International Conference on Computing, Communications and Networking Technologies. https://doi.org/10.1109/ICCCNT.2013.6726818
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1), 135. https://doi.org/10.1561/1500000011
Purwidiantoro, M. H., & F, K. D. (2018). Pengaruh Penggunaan Media Sosial Terhadap Pengembangan Usaha Kecil Menengah (UKM). Ekacida, 1(1), 31. https://journal.amikomsolo.ac.id/index.php/ekacida/article/download/19/11
Rizki, M. M. (2019). Analisis Sentimen Terhadap Produk Otomotif dari Twitter Menggunakan Kombinasi Algoritma K-Nearest Neighbor dan Pendekatan Lexicon (Studi Kasus?: Mobil Toyota). Universitas Islam Negeri Syarif Hidayatullah. https://repository.uinjkt.ac.id/dspace/bitstream/123456789/48643/1/MAHDI%20MUHAMMAD%20RIZKI-FST.pdf
Sari, A., & Bador. (2022). Sentiment analysis for cruises in Saudi Arabia on social media platforms using machine learning algorithms. Journal of Big Data, 9, 21. https://doi.org/10.1186/s40537-022-00568-5
Sari, R. (2020). Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-NN). Evolusi?: Jurnal Sains Dan Manajemen, 10–17. https://doi.org/10.31294/evolusi.v8i1.7371
Setia, P., & Rahman, M. T. (2022). Socializing Religious Moderation and Peace in the Indonesian Lanscape. Jurnal Iman Dan Spiritualitas, 2(3), 333–340. https://doi.org/10.15575/jis.v2i3.17916
Statnikov, A., Hardin, D., & Aliferis, C. (2006). Using SVM weight-based methods to identify causally relevant and non-causally relevant variables. http://ccdlab.org/paper-pdfs/NIPS_2006.pdf
Sudradat, T., Supiana, & Zakiah, Q. Y. (2021). Higher Education, Nation Character, and Religious Moderation Program: A Public Policy Perspective. Journal of Asian Social Science Research, 3(1), 73–92. https://doi.org/10.15575/jassr.v3i1.35
Tim Kelompok Kerja Moderasi Beragama Kementerian Agama RI. (2020). Peta Jalan (Roadmap) Penguatan Moderasi Beragama Tahun 2020-2024. Kementerian Agama RI.
Vapnik, V. (2014). Invited Speaker. Information Processing and Management.
Yaakub, M. B., Othman, K., & Nazi, N. (2019). Islamic Moderation (wasatiyah) Manifestation of Practices: An Elaboration of Its Degree of Effectiveness. Humanities and Social Sciences Reviews, 7(1), 171–179. https://doi.org/10.18510/hssr.2019.7121
Zou, X., Yang, J., & Zhang, J. (2018). Microblog Sentiment Analysis using Social and Topic Context. https://doi.org/10.1371/journal.pone.0191163