Morphology of 925 Silver Powder Particles Produced From Gas Atomization

Authors

  • Montri Kawsuk Faculty of Engineering, Rajamangala University of Technology Thanyaburi Patumtani, Khlong Luang Pathum Thani,
  • Surat Wannasrib Rajamangala University of Technology Isan
  • Sirichai Torsakula Rajamangala University of Technology Thanyaburi Patumtani

DOI:

https://doi.org/10.37385/jaets.v5i2.4891

Keywords:

Gas Atomization, Close Coupling, 925 Silver, Particle Morphology, SEM

Abstract

In order to examine the impact of metal water temperature and gas flow rate on the production of 925 silver alloy powder via closed-coupled nozzle and gas atomization process with nitrogen gas as the production medium, and since the morphology of the powder particles could not account for the influence of these variables, the aim was to comprehend and propose a new approach for a general framework for studying the influence of such factors. As a consequence, an investigation was conducted into the impact of these two variables on the morphology, which was characterized by roundness values. Particle size and distribution information can be conveyed to facilitate interpretation. According to the results of the experiment, the gas flow rate and metal water temperature influence the particle morphology in terms of particle size and distribution with respect to roundness. The particle size distribution of metal powders is more restricted and the particle roundness increases. This is due to the fact that the particle morphology plays a critical role in determining which metal powder particles are suitable for forming metal powder workpieces via various production methods. The gas flow rate and metal water temperature influence the particle size distribution, roundness value, and significant size of 925 silver alloy powder.

Downloads

Download data is not yet available.

References

Abbireddy, C. O., & Clayton, C. R. (2009). A review of modern particle sizing methods. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 162(4), 193-201. https://doi.org/10.1680/geng.2009.162.4.193

Baitimerov, R., Lykov, P., Zherebtsov, D., Radionova, L., Shultc, A., & Prashanth, K. G. (2018). Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting. Materials, 11(5), 742. https://doi.org/10.3390/ma11050742

Bao, Q., Yang, Y., Wen, X., Guo, L., & Guo, Z. (2021). The preparation of spherical metal powders using the high-temperature remelting spheroidization technology. Materials & Design, 199, 109382. https://doi.org/10.1016/j.matdes.2020.109382

Beckers, D., Ellendt, N., Fritsching, U., & Uhlenwinkel, V. (2020). Impact of process flow conditions on particle morphology in metal powder production via gas atomization. Advanced Powder Technology, 31(1), 300-311. https://doi.org/10.1016/j.apt.2019.10.022

Both, E. M., Boom, R. M., & Schutyser, M. A. I. (2020). Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technology, 363, 519-524. https://doi: 10.1016/j.powtec.2020.01.001

Cacace, S., Boccadoro, M., & Semeraro, Q. (2023). Investigation on the effect of the gas-to-metal ratio on powder properties and PBF-LB/M processability. Progress in Additive Manufacturing, 1-16. https://doi.org/10.1007/s40964-023-00490-z

DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112-224. https://doi.org/10.1016/j.pmatsci.2017.10.001

Esteban, L. B., Shrimpton, J., & Ganapathisubramani, B. (2019). Study of the circularity effect on drag of disk-like particles. International Journal of Multiphase Flow, 110, 189-197. https://doi.org/10.1016/j.ijmultiphaseflow.2018.09.012

Fan, X., Liu, J., Zhang, F., Chen, L., Collins, D., Xu, W., ... & Li, Z. (2020). Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions. Atmospheric Chemistry and Physics, 20(2), 915-929. https://doi.org/10.5194/acp-20-915-2020

Fu, X., Huck, D., Makein, L., Armstrong, B., Willen, U., & Freeman, T. (2012). Effect of particle shape and size on flow properties of lactose powders. Particuology, 10(2), 203-208. https://doi.org/10.1016/j.partic.2011.11.003

Giganto, S., Martínez-Pellitero, S., Cuesta, E., Meana, V. M., & Barreiro, J. (2020). Analysis of modern optical inspection systems for parts manufactured by selective laser melting. Sensors, 20(11), 3202. https://doi.org/10.3390/s20113202

Grace, J. R., & Ebneyamini, A. (2021). Connecting particle sphericity and circularity. Particuology, 54, 1-4. https://doi.org/10.1016/j.partic.2020.09.006

Guo, J., Zhou, S., Cai, M., Zhao, J., Song, W., Zhao, W., ... & Wang, X. (2020). Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China. Atmospheric Chemistry and Physics, 20(12), 7595-7615. https://doi.org/10.5194/acp-20-7595-2020

Guzman, J., de Moura Nobre, R., Rodrigues Júnior, D. L., de Morais, W. A., Nunes, E. R., Bayerlein, D. L., ... & Landgraf, F. J. (2021). Comparing spherical and irregularly shaped powders in laser powder bed fusion of Nb47Ti alloy. Journal of Materials Engineering and Performance, 30(9), 6557-6567. https://doi.org/10.1007/s11665-021-05916-9

Hejduk, A., Czajka, S., & Lulek, J. (2021). Impact of co-processed excipient particles solidity and circularity on critical quality attributes of orodispersible minitablets. Powder Technology, 387, 494-508. https://doi.org/10.1016/j.powtec.2021.03.063

Hu, W., Campuzano-Jost, P., Day, D. A., Nault, B. A., Park, T., Lee, T., ... & Jimenez, J. L. (2020). Ambient quantification and size distributions for organic aerosol in aerosol mass spectrometers with the new capture vaporizer. ACS Earth and Space Chemistry, 4(5), 676-689. https://doi.org/10.1021/acsearthspacechem.9b00310

Hu, Z., Nagarajan, B., Song, X., Huang, R., Zhai, W., & Wei, J. (2019). Formation of SS316L single tracks in micro selective laser melting: surface, geometry, and defects. Advances in Materials Science and Engineering, 2019. https://doi.org/10.1155/2019/9451406

Jargalsaikhan, B., Uranchimeg, K., Bor, A., Kim, K. S., & Choi, H. (2024). Particle morphology control for spherical powder fabrication using the ball milling process with DEM simulation. Particuology, 90, 41-50. https://doi.org/10.1016/j.partic.2023.11.019

Kalman, H. (2022). Effect of particle shape on void fraction. Powder Technology, 407, 117665. https://doi.org/10.1016/j.powtec.2022.117665

Kassym, K., & Perveen, A. (2020). Atomization processes of metal powders for 3D printing. Materials today: proceedings, 26, 1727-1733. https://doi.org/10.1016/j.matpr.2020.02.364

Kawsuk, M., Wannasri, S., & Torsakul, S. (2024). 925 Silver Alloy For Jewelry Manufacturing Using Additive Manufacturing, Part 1: Oxide On Metal Powder Surface. Journal of Southwest Jiaotong University, 59(1), . https://doi.org/10.35741/issn.0258-2724.59.1.13

Li, X. G., Zhu, Q., Shu, S., Fan, J. Z., & Zhang, S. M. (2019). Fine spherical powder production during gas atomization of pressurized melts through melt nozzles with a small inner diameter. Powder technology, 356, 759-768. https://doi.org/10.1016/j.powtec.2019.09.023

Li, X., Guo, B., Yu, X., Yang, C., Zhou, S., Cui, S., ... & Li, W. (2024). Particle morphology dependence of the mechanical and electrical properties in the in-situ graphene reinforced Cu matrix composites. Composites Part A: Applied Science and Manufacturing, 179, 108032. https://doi.org/10.1016/j.compositesa.2024.108032

Lu, H., Guo, X., Jin, Y., & Gong, X. (2018). Effect of moisture on flowability of pulverized coal. Chemical Engineering Research and Design, 133, 326-334. https://doi.org/10.1016/j.cherd.2018.03.023.

Macri, D., Chirone, R., Salehi, H., Sofia, D., Materazzi, M., Barletta, D., ... & Poletto, M. (2020). Characterization of the bulk flow properties of industrial powders from shear tests. Processes, 8(5), 540. https://doi.org/10.3390/pr8050540

Malý, M., Höller, C., Skalon, M., Meier, B., Koutný, D., Pichler, R., ... & Paloušek, D. (2019). Effect of process parameters and high-temperature preheating on residual stress and relative density of Ti6Al4V processed by selective laser melting. Materials, 12(6), 930. https://doi.org/10.3390/ma12060930

Mathias, L. E., Pinotti, V. E., Batistão, B. F., Rojas-Arias, N., Figueira, G., Andreoli, A. F., & Gargarella, P. (2024). Metal powder as feedstock for laser-based additive manufacturing: From production to powder modification. Journal of Materials Research, 39(1), 19-47. https://doi.org/10.1557/s43578-023-01271-8

Mellin, P., Rashidi, M., Fischer, M., Nyborg, L., Marchetti, L., Hulme-Smith, C., ... & Strondl, A. (2020). Moisture in metal powder and its implication for processability in L-PBF and elsewhere. Berg-und Huttenmännische Monatshefte (BHM), 166(1), 33-39. https://doi.org/10.1007/s00501-020-01070-2

Mitterlehner, M., Danninger, H., Gierl-Mayer, C., Gschiel, H., Martinez, C., Tomisser, M., ... & Benigni, C. (2021). Comparative evaluation of characterization methods for powders used in additive manufacturing. Journal of Materials Engineering and Performance, 30(9), 7019-7034. https://doi.org/10.1007/s11665-021-06113-4

Motas, J. G., Gorji, N. E., Nedelcu, D., Brabazon, D., & Quadrini, F. (2021). XPS, SEM, DSC and nanoindentation characterization of silver nanoparticle-coated biopolymer pellets. Applied Sciences, 11(16), 7706. https://doi.org/10.3390/app11167706

Msetra, Z., Khitouni, N., Suñol, J. J., Khitouni, M., & Chemingui, M. (2021). Characterization and thermal analysis of new amorphous Co60Fe18Ta8B14 alloy produced by mechanical alloying. Materials Letters, 292, 129532. https://doi.org/10.1016/j.matlet.2021.129532

Nagahashi, Y., Takeuchi, H., Grace, J. R., & Asako, Y. (2023). Circulation and separation of binary solids in connected fluidized beds. Powder Technology, 428, 118874. https://doi.org/10.1016/j.powtec.2023.118874

Nasr, G. G., Yule, A. J., & Bendig, L. (2013). Industrial sprays and atomization: design, analysis and applications. Springer Science & Business Media.

Ruinan, G. U., WONG, K., & Ming, Y. A. N. (2020). Laser additive manufacturing of typical highly reflective materials——gold, silver and copper. Scientia Sinica (Physica, Mechanica and Astronomica), 50(3), 44-57. https://doi.org/10.1360/SSPMA-2019-0267

Spierings, A. B., Dawson, K., Uggowitzer, P. J., & Wegener, K. (2018). Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc-and Zr-modified Al-Mg alloys. Materials & Design, 140, 134-143. https://doi.org/10.1016/j.matdes.2017.11.053

Urionabarrenetxea, E., Avello, A., Rivas, A., & Martín, J. M. (2021). Experimental study of the influence of operational and geometric variables on the powders produced by close-coupled gas atomisation. Materials & Design, 199, 109441. https://doi.org/10.1016/j.matdes.2020.109441

Vock, S., Klöden, B., Kirchner, A., Weißgärber, T., & Kieback, B. (2019). Powders for powder bed fusion: a review. Progress in Additive Manufacturing, 4, 383-397. https://doi.org/10.1007/s40964-019-00078-6

Williams, R., Bilton, M., Harrison, N., & Fox, P. (2021). The impact of oxidised powder particles on the microstructure and mechanical properties of Ti-6Al-4 V processed by laser powder bed fusion. Additive Manufacturing, 46, 102181. https://doi.org/10.1016/j.addma.2021.102181

Wu, C., Zhang, S., Han, J., Zhang, C., & Kong, F. (2023). Study on the Microstructure and Mechanical Properties of Non-Equimolar NiCoFeAlTi High Entropy Alloy Doped with Trace Elements. Metals, 13(4), 646. https://doi.org/10.3390/met13040646

Yang, L., Mertens, R., Ferrucci, M., Yan, C., Shi, Y., & Yang, S. (2019). Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties. Materials & Design, 162, 394-404. https://doi.org/10.1016/j.matdes.2018.12.007

Zheng, B., Lin, Y., Zhou, Y., & Lavernia, E. J. (2009). Gas atomization of amorphous aluminum powder: Part II. Experimental investigation. Metallurgical and Materials Transactions B, 40, 995-1004. https://doi.org/10.1007/s11663-009-9277-4

Zhu, H., Li, Y., Li, B., Zhang, Z., & Qiu, C. (2018). Effects of low-temperature tempering on microstructure and properties of the laser-cladded AISI 420 martensitic stainless steel coating. Coatings, 8(12), 451. https://doi.org/10.3390/coatings8120451

Zhu, X., Liu, W., Zhang, H., Zhang, H., & Zhu, J. (2024). Narrowing particle size distributions to enhance powder coating performance by improved classifying. Powder Technology, 435, 119443. https://doi.org/10.1016/j.powtec.2024.119443

Downloads

Published

2024-06-06

How to Cite

Kawsuk, M., Wannasrib, S., & Torsakula, S. (2024). Morphology of 925 Silver Powder Particles Produced From Gas Atomization. Journal of Applied Engineering and Technological Science (JAETS), 5(2), 966–976. https://doi.org/10.37385/jaets.v5i2.4891