A Sustainable Hybrid Off-Grid System Design for Isolated Island Considering Techno-Economic and Frequency Stability Analysis

Authors

  • Candra Febri Nugraha Universitas Gadjah Mada
  • Lukman Subekti Department of Electrical Engineering and Informatics, Universitas Gadjah Mada, Indonesia
  • Ahmad Adhiim Muthahhari Department of Electrical Engineering and Informatics, Universitas Gadjah Mada, Indonesia
  • Budi Eko Prasetyo Department of Electrical Engineering, Politeknik Negeri Malang, Indonesia
  • Rizki Firmansyah Setya Budi Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Indonesia

DOI:

https://doi.org/10.37385/jaets.v6i1.4892

Keywords:

Frequency Stability, Isolated Area, Off-Grid Hybrid, Power System Assessment, System Planning, Techno-Economic Analysis

Abstract

Electrifying remote islands presents complex challenges. Currently, most remote areas in Indonesia rely on diesel fuel for their electricity supplies, contributing to escalating generation costs and environmental degradation. Aligned with the global net-zero emission goal, this study proposes the design of a hybrid off-grid system for Kabare Village in the Raja Ampat Islands, integrating techno-economic and frequency stability analyses. HOMER Pro was employed to identify the most optimal system configuration, while DIgSILENT PowerFactory was utilized to assess the frequency stability performance of the system. This study unveils that the optimal system combines existing generators, solar panels, and batteries, with a net present cost of $1.37 million. The optimal system delivers an 11.8% reduction in levelized cost of energy to $0.269/kWh, alongside a 25.6% decrease in both fuel consumption and greenhouse gas emissions compared to the existing system. Moreover, the system meets frequency stability metrics, even under extreme operational conditions. This study demonstrates that implementing a hybrid off-grid system in Kabare Village is not only technically and economically feasible but also a practical option. These findings are anticipated to assist the government in promoting the utilization of renewable energy sources, particularly in remote areas such as the islands of eastern Indonesia.

Downloads

Download data is not yet available.

References

Ahmed, M. R., Hasan, M. R., Al Hasan, S., Aziz, M., & Hoque, M. E. (2023). Feasibility Study of the Grid-Connected Hybrid Energy System for Supplying Electricity to Support the Health and Education Sector in the Metropolitan Area. Energies, 16(4). https://doi.org/10.3390/en16041571

Alhawsawi, E. Y., Habbi, H. M. D., Hawsawi, M., & Zohdy, M. A. (2023). Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University. Energies, 16(15). https://doi.org/https://doi.org/10.3390/en16155830

Alqahtani, B. J., & Patino-Echeverri, D. (2023). Identifying economic and clean strategies to provide electricity in remote rural areas: Main-grid extension vs. Distributed electricity generation. Energies, 16(2), 958. https://doi.org/https://doi.org/10.3390/en16020958

Ampah, J. D., Jin, C., Agyekum, E. B., Afrane, S., Geng, Z., Adun, H., Yusuf, A. A., Liu, H., & Bamisile, O. (2023). Performance analysis and socio-enviro-economic feasibility study of a new hybrid energy system-based decarbonization approach for coal mine sites. Science of the Total Environment, 854(June 2022), 158820. https://doi.org/10.1016/j.scitotenv.2022.158820

Aryani, D. R., Song, H., & Cho, Y.-S. (2022). Operation strategy of battery energy storage systems for stability improvement of the Korean power system. Journal of Energy Storage, 56, 106091. https://doi.org/https://doi.org/10.1016/j.est.2022.106091

Atkinson, J., & Albayati, I. M. (2021). Impact of the generation system parameters on the frequency response of the power system: A UK grid case study. Electricity, 2(2), 143–157. https://doi.org/https://doi.org/10.3390/electricity2020009

Azhar, I. F., Putranto, L. M., & Hadi, S. P. (2020). Design of Battery Energy Storage System Control Scheme for Frequency Regulation for PV Integrated Power System. Proceeding - 1st FORTEI-International Conference on Electrical Engineering, FORTEI-ICEE 2020, 7–12. https://doi.org/10.1109/FORTEI-ICEE50915.2020.9249865

Badan Pusatat Statistik Kabupaten Raja Ampat. (2020). Kabupaten Raja Ampat dalam Angka. https://rajaampatkab.bps.go.id/publication/2020/04/27/a323a8fc32d8d448c6adc860/kabupaten-raja-ampat-dalam-angka-2020.html

Bank Indonesia. (2023). Inflation Data. https://www.bi.go.id/en/statistik/indikator/data-inflasi.aspx

Barco-Jiménez, J., Córdoba, A., Escobar Rosero, E., Pantoja, A., & Caicedo Bravo, E. F. (2022). Optimal sizing of a grid-connected microgrid and operation validation using HOMER Pro and DIgSILENT. Scientia et Technica, 27(1), 28–34. https://doi.org/10.22517/23447214.24965

Bryant, J. S., Sokolowski, P., Jennings, R., & Meegahapola, L. (2021). Synchronous Generator Governor Response: Performance Implications under High Share of Inverter-Based Renewable Energy Sources. IEEE Transactions on Power Systems, 36(3), 2721–2724. https://doi.org/10.1109/TPWRS.2021.3054251

Cárdenas Guerra, C. A., Ospino Castro, A. J., & Peña Gallardo, R. (2023). Analysis of the Impact of Integrating Variable Renewable Energy into the Power System in the Colombian Caribbean Region. Energies, 16(21). https://doi.org/10.3390/en16217260

Chamorro, H. R., Orjuela-Cañón, A. D., Ganger, D., Persson, M., Gonzalez-Longatt, F., Sood, V. K., & Martinez, W. (2020). Nadir frequency estimation in low-inertia power systems. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 918–922. https://doi.org/https://doi.org/10.1109/ISIE45063.2020.9152296

Chavez, H., Baldick, R., & Sharma, S. (2014). Governor rate-constrained OPF for primary frequency control adequacy. IEEE Transactions on Power Systems, 29(3), 1473–1480. https://doi.org/10.1109/TPWRS.2014.2298838

Denholm, P., Mai, T., Kenyon, R. W., Kroposki, B., & Malley, M. O. (2020). Inertia and the Power Grid?: A Guide Without the Spin. National Renewable Energy Laboratory, May, 48. https://www.nrel.gov/docs/fy20osti/73856.pdf

Elhassan, Z. A. (2023). Utilizing Homer Power Optimization Software for A Techno-Economic Feasibility, Study of a Sustainable Grid-Connected Design for Urban Electricity in, Khartoum. Metallurgical and Materials Engineering, 29(1), 101–118. https://doi.org/10.56801/MME988

Gholami, M., Sanjari, M. J., Safari, M., Akbari, M., & Kamali, M. R. (2020). Static security assessment of power systems: A review. International Transactions on Electrical Energy Systems, 30(9), 1–23. https://doi.org/10.1002/2050-7038.12432

Hawas, M. N., Hasan, I. J., & Mnati, M. J. (2022). Simulation and analysis of the distributed photovoltaic generation systems based on DIgSILENT power factory. Indonesian Journal of Electrical Engineering and Computer Science, 28(3), 1227–1238. https://doi.org/10.11591/ijeecs.v28.i3.pp1227-1238

HOMER Energy. (2017). HOMER Pro 3.10. https://www.homerenergy.com/products/pro/docs/3.10/index.html

Ishraque, M. F., Rahman, A., Shezan, S. A., & Shafiullah, G. (2022). Operation and Assessment of a Microgrid for Maldives: Islanded and Grid-Tied Mode. Sustainability, 14(23), 15504. https://doi.org/10.3390/su142315504

Kanata, S., Baqaruzi, S., Muhtar, A., Prasetyawan, P., & Winata, T. (2021). Optimal planning of hybrid renewable energy system using Homer in Sebesi Island, Indonesia. International Journal of Renewable Energy Research (IJRER), 11(4), 1507–1516. https://doi.org/https://doi.org/10.20508/ijrer.v11i4.12296.g8303

Kundur, P. (2007). Power System Stability (Vol. 10). CRC Press New York.

Kwon, H. Il, Cho, Y. S., & Choi, S. M. (2020). A study on optimal power system reinforcement measures following renewable energy expansion. Energies, 13(22), 1–35. https://doi.org/10.3390/en13225929

Lasseter, R. H., Chen, Z., & Pattabiraman, D. (2020). Grid-Forming Inverters: A Critical Asset for the Power Grid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 925–935. https://doi.org/10.1109/JESTPE.2019.2959271

López-Castrillón, W., Sepúlveda, H. H., & Mattar, C. (2021). Off-grid hybrid electrical generation systems in remote communities: Trends and characteristics in sustainability solutions. Sustainability, 13(11), 5856. https://doi.org/https://doi.org/10.3390/su13115856

Matsumoto, K., & Matsumura, Y. (2022). Challenges and economic effects of introducing renewable energy in a remote island: A case study of Tsushima Island, Japan. Renewable and Sustainable Energy Reviews, 162, 112456. https://doi.org/10.1016/j.rser.2022.112456

Mehta, S., & Basak, P. (2020). A Case Study on PV Assisted Microgrid Using HOMER Pro for Variation of Solar Irradiance Affecting Cost of Energy. 2020 IEEE 9th Power India International Conference (PIICON), 1–6. https://doi.org/10.1109/PIICON49524.2020.9112894

Ministry of Energy and Mineral Resources; Danish Energy Agency. (2021). Technology Data for the Indonesian Power Sector. February, 1–215. https://ens.dk/sites/ens.dk/files/Globalcooperation/technology_data_for_the_indonesian_power_sector_-_final.pdf

National Aeronautics and Space Administration (NASA) Langley Research Center (LRac). (2022). Prediction of Worldwide Energy Resource (POWER) Project.

PT PLN (Persero). (2020). Konversi PLTD 225 MW di 200 Lokasi Berbasis Energi Baru & Terbarukan (Conversion of 225 MW Diesel Power Plants at 200 Locations Based on New & Renewable Energy).

PT PLN (Persero). (2023). Statistik PLN 2022. In Statistik PLN (Issue 03001).

Putranto, L. M., Putra, E. N., Budi, R. F. S., & Nugraha, C. F. (2021). Generation and Transmission Expansion Planning in Remote Areas by considering Renewable Energy Policy and Local Energy Resources: The Case Study of Jayapura Power System. 2021 3rd International Conference on High Voltage Engineering and Power Systems (ICHVEPS), 143–148. https://doi.org/https://doi.org/10.1109/ICHVEPS53178.2021.9600932

Rathnayake, D. B., Akrami, M., Phurailatpam, C., Me, S. P., Hadavi, S., Jayasinghe, G., Zabihi, S., & Bahrani, B. (2021). Grid forming inverter modeling, control, and applications. IEEE Access, 9, 114781–114807. https://doi.org/https://doi.org/10.1109/ACCESS.2021.3104617

Renugen. (2024). Ryse Energy E-10 10kW Wind Turbine. https://store-7wpeis.mybigcommerce.com/ryse-energy-e-10-10kw-wind-turbine/

Riayatsyah, T. M. I., Geumpana, T. A., Fattah, I. M. R., & Mahlia, T. M. I. (2022). Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro. Sustainability (Switzerland), 14(16). https://doi.org/10.3390/su14169846

Roy, D. (2023). Modelling an off-grid hybrid renewable energy system to deliver electricity to a remote Indian island. Energy Conversion and Management, 281(January), 116839. https://doi.org/10.1016/j.enconman.2023.116839

Russian Federation. (2014). State Standard GOST 32144-2013.

Ryse Energy. (2020). E-10 Data Sheet.

See, A. M. K., Mehranzamir, K., Rezania, S., Rahimi, N., Afrouzi, H. N., & Hassan, A. (2022). Techno-economic analysis of an off-grid hybrid system for a remote island in Malaysia: Malawali island, Sabah. Renewable and Sustainable Energy Transition, 2, 100040. https://doi.org/https://doi.org/10.1016/j.rset.2022.100040

Setyowati, A. B. (2020). Mitigating energy poverty: Mobilizing climate finance to manage the energy trilemma in Indonesia. Sustainability, 12(4), 1603. https://doi.org/https://doi.org/10.3390/su12041603

Shezan, S. A., Ishraque, M. F., Muyeen, S. M., Arifuzzaman, S. M., Paul, L. C., Das, S. K., & Sarker, S. K. (2022). Effective dispatch strategies assortment according to the effect of the operation for an islanded hybrid microgrid. Energy Conversion and Management: X, 14(January), 100192. https://doi.org/10.1016/j.ecmx.2022.100192

Simic, N., Strezoski, L., & Dumnic, B. (2021). Short-circuit analysis of DER-based microgrids in connected and islanded modes of operation. Energies, 14(19), 6372. https://doi.org/https://doi.org/10.3390/en14196372

Subekti, L., Nugraha, C. F., Arrofiq, M., Muthahhari, A. A., Prasetyo, B. E., & Qurrota, A. (2024). A Techno-Economic Analysis for Raja Ampat Off-Grid System. Jurnal Nasional Teknik Elektro, 1. https://doi.org/https://doi.org/10.25077/jnte.v13n1.1180.2024

Syafrianto, D., Banjar-Nahor, K. M., Nugraha, H., Hakam, D. F., Hadi, P. O., & Hariyanto, N. (2021). Optimized Hybrid Power System Configuration for the First Phase of Dedieselization Programs. 2021 3rd International Conference on High Voltage Engineering and Power Systems, ICHVEPS 2021, 387–392. https://doi.org/10.1109/ICHVEPS53178.2021.9601010

Trina Solar Limited. (2020). TSM-DE08M.08(II). https://static.trinasolar.com/sites/default/files/EU_Datasheet_HoneyM_DE08M.08%28II%29_2021_A.pdf

World Bank. (2022). Population, total - Indonesia. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ID

Xu, A., Awalin, L. J., Al-Khaykan, A., Fard, H. F., Alhamrouni, I., & Salem, M. (2023). Techno-Economic and Environmental Study of Optimum Hybrid Renewable Systems, including PV/Wind/Gen/Battery, with Various Components to Find the Best Renewable Combination for Ponorogo Regency, East Java, Indonesia. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15031802

Xu, G., Chen, Z., Zhu, H., Wang, C., Hou, W., & Zhu, X. (2021). Fast frequency regulation strategy for improving frequency stability of off-grid microgrid. China International Conference on Electricity Distribution, CICED, 2021-April(202005300000008), 568–574. https://doi.org/10.1109/CICED50259.2021.9556739

Zebra, E. I. C., van der Windt, H. J., Nhumaio, G., & Faaij, A. P. C. (2021). A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renewable and Sustainable Energy Reviews, 144, 111036. https://doi.org/https://doi.org/10.1016/j.rser.2021.111036

Downloads

Published

2024-12-15

How to Cite

Nugraha, C. F., Subekti, L., Muthahhari, A. A., Prasetyo , B. E., & Budi, R. F. S. (2024). A Sustainable Hybrid Off-Grid System Design for Isolated Island Considering Techno-Economic and Frequency Stability Analysis. Journal of Applied Engineering and Technological Science (JAETS), 6(1), 444–464. https://doi.org/10.37385/jaets.v6i1.4892