Multimedia Transmission Technique for Smart Ambulance with multi-carrier OFDM in a V2V and V2I Channel model using Software Defined Radio Technology

Authors

  • Wahyu Pamungkas Telkom University, Purwokerto
  • Anggun Fitrian Telkom University, Purwokerto
  • Solichah Larasati Telkom University, Purwokerto
  • Ari Endang Jayati Universitas Semarang
  • Elfira Nureza Ardina Universitas Semarang
  • Jans Hendry Universitas Gadjah Mada

DOI:

https://doi.org/10.37385/jaets.v6i1.5030

Keywords:

Software Defined Radio, V2V, V2I, OFDM, Smart Ambulance

Abstract

This research explores the implementation of a cutting-edge Software Defined Radio (SDR) framework to transmit multimedia files that can be assumed to be medical data in smart ambulances. The system utilizes multi-carrier Orthogonal Frequency-Division Multiplexing (OFDM) across V2V and V2I channels. The research is based on the notion that adaptive real-time communication is essential for the uninterrupted supply of key patient data to medical facilities and vehicles in transit, in order to address the problems posed by high mobility and dynamic environmental conditions. A comprehensive SDR system has been constructed and assessed in comparison to conventional communication mechanisms, demonstrating notable advancements in data accuracy and uninterrupted transmission. Our system successfully established stable connections in V2I channels, even in the presence of environmental obstacles. It maintained average power levels of approximately 32.074 dBm and a Peak-to-Average Power Ratio (PAPR) of 1.037 dB. These results indicate a constant signal envelope that promotes optimal signal transmission with excellent fidelity. In V2V scenarios, we successfully maintained data integrity with a low Peak-to-Average Power Ratio (PAPR) of 3.316 dB, even while vehicles were moving at a speed of 20 km/h. Additionally, we secured a high likelihood (94.5%) that the signal power remained close to the average, showing the robustness of our system against Doppler effects and signal dispersion. Text transmissions experienced errors when subjected to a Doppler shift of 20 km/h, which impacted the decoding of the received text. Similarly, image transmissions revealed limitations in bandwidth, as a transmitted image of 3640 KB was received with a degraded 4 KB. This emphasizes the importance of implementing effective error handling and recovery mechanisms. The results illustrate the efficacy of the suggested system in maintaining a high Quality of Service (QoS), offering proof of the effectiveness of contemporary wireless communication technologies in improving emergency medical services and setting new standards in smart ambulance capabilities.

Downloads

Download data is not yet available.

References

Abdeen, M. A. R., Ahmed, M. H., Member, S., El-nainay, M., & Member, S. (2022). A Novel Smart Ambulance System—Algorithm Design , Modeling , and Performance Analysis. IEEE Access, 10, 42656–42672. https://doi.org/10.1109/ACCESS.2022.3168736

Arena, F., & Pau, G. (2019). An overview of vehicular communications. Future Internet, 11(2). https://doi.org/10.3390/fi11020027

Bosquez, C., Moreira, R., & Cruz, A. D. La. (2017). Alert System for Emergency Vehicles Using Software-Defined Radio. IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS) Alert, 1–5. https://doi.org/10.1109/COMCAS.2017.8244741.

Bou Saleh, A., Bulakci, Ö., Hämäläinen, J., Redana, S., & Raaf, B. (2012). Analysis of the impact of site planning on the performance of relay deployments. IEEE Transactions on Vehicular Technology, 61(7), 3139–3150. https://doi.org/10.1109/TVT.2012.2202253

Campolo, C., & Molinaro, A. (2014). Vehicular Ad hoc Networks ( VANET ) Standards, Solutions, and Research. In R. Scopigno (Ed.), Springer. Springer. https://doi.org/10.1007/978-1-84800-328-6

Campolo, C., Molinaro, A., & Scopigno, R. (2015). Vehicular ad hoc networks standards, solutions, and research. In Vehicular Ad Hoc Networks Standards, Solutions, and Research. https://doi.org/10.1007/978-3-319-15497-8

Campuzano, A. J., Fernández, H., Balaguer, D., Vila, A., Bernardo-clemente, B., Rodrigo-peñarrocha, V. M., Reig, J., Valero-nogueira, A., & Rubio, L. (2012). Vehicular-to-Vehicular Channel Characterization and Measurement Results. 15–24.

Debnath, S., Arif, W., Sen, D., & Baishya, S. (2024). LTE Cell Planning for Resource Allocation in Emergency Communication. In Wireless Personal Communications (Vol. 135, Issue 2). Springer US. https://doi.org/10.1007/s11277-024-11103-5

Dey, K. C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., & Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network—Performance evaluation. Transportation Research Part C: Emerging Technologies, 68, 168–184. https://doi.org/10.1016/j.trc.2016.03.008

Feukeu, E. A., Djouani, K., & Kurien, A. (2016). Doppler Shift Mitigation in a VANET using an IDDM approach. Journal of Ambient Intelligence and Humanized Computing, 7(3), 321–332. https://doi.org/10.1007/s12652-016-0365-4

Fliedner, N. H., Block, D., & Meier, U. (2018). A Software-Defined Channel Sounder for Industrial Environments with Fast Time Variance. Proceedings of the International Symposium on Wireless Communication Systems, 2018-Augus. https://doi.org/10.1109/ISWCS.2018.8491207

Ghanim, Z. N., & Omran, B. M. (2021). OFDM PAPR reduction for image transmission using improved tone reservation. International Journal of Electrical and Computer Engineering, 11(1), 416–423. https://doi.org/10.11591/ijece.v11i1.pp416-423

Gopalam, S., Pillai, S. B., Whiting, P., Inaltekin, H., Collings, I. B., & Hanly, S. V. (2024). A New Micro-Subcarrier OFDM-Based Waveform for Delay Doppler Domain Communication. IEEE Access, 12(March), 57879–57894. https://doi.org/10.1109/ACCESS.2024.3390682

Gulo, M. M., Astawa, I. G. P., Arifin, Moegiharto, Y., & Briantoro, H. (2023). The Joint Channel Coding and Pre-Distortion Technique on the USRP-Based MIMO-OFDM System. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(4), 930–939. https://doi.org/10.29207/resti.v7i4.5093

Hamarsheh, Q., Daoud, O., & Damati, M. A. A. (2023). V2V Communications Performance Enhancement. Wireless Personal Communications, 129(March), 2387–2401.

Harja, Y. D. (2018). Determine The Best Option for Nearest Medical Services Using Google Maps API , Haversine and TOPSIS Algorithm. 814–819.

Hendry, J., Nugraha, E. S., Pamungkas, W., & Isnawati, A. F. (2019). Audio signal transmission over vehicular channel with moving scatterer. Proceeding - 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT 2019, 490–495. https://doi.org/10.1109/ICAIIT.2019.8834523

Hossain, N., & Shimamura, T. (2018). Waveform Design of DFT-Spread WR-OFDM System for the OOB and PAPR Reduction. 792–796.

Hua, J. Y., Yuan, D. H., Li, G., & Meng, L. M. (2014). Accurate estimation of Doppler shift in mobile communications with high vehicle speed. International Journal of Communication Systems, 27, 3515–3525. https://doi.org/10.1002/dac

Isnawati, A. F., Pamungkas, W., & Kusuma Praja, P. (2023). Doppler Spectrum of High Speed Train Channel Model for DVB-T2 Application. IEEE International Conference on Communication, Networks and Satellite (COMNETSAT) Doppler, 1–7.

Jayati, A. E., Wirawan, W., Suryani, T., & Endroyono, E. (2019). Partial transmit sequence and selected mapping schemes for PAPR Reduction in GFDM systems. International Journal of Intelligent Engineering and Systems, 12(6), 114–122. https://doi.org/10.22266/ijies2019.1231.11

Krygier, J., Lubkowski, P., Maslanka, K., Dobrowolski, A. P., Mrozek, T., Znaniecki, W., & Oskwarek, P. (2024). Smart Medical Evacuation Support System for the Military. Sensors, 24(14), 4581. https://doi.org/10.3390/s24144581

Kshatriya, B. (2019). AD-HOC NETWORK USING SOFTWARE DEFINED RADIO. San Diego State University.

Lang, O., Hofbauer, C., Feger, R., & Huemer, M. (2024). Effects of Doppler-Division Multiplexing on OFDM Joint Sensing and Communication Systems. IEEE Open Journal of Signal Processing, 5(January), 229–237. https://doi.org/10.1109/OJSP.2023.3343308

Leis, J. W. (2018). Communication Systems Principles Using MATLAB®. In Communication Systems Principles Using MATLAB®. https://doi.org/10.1002/9781119470663

Liang, L., Kim, J., Jha, S. C., Sivanesan, K., & Li, G. Y. (2017). Spectrum and Power Allocation for Vehicular Communications with Delayed CSI Feedback. IEEE Wireless Communications Letters, 6(4), 458–461. https://doi.org/10.1109/LWC.2017.2702747

Liu, R., Hua, M., Guan, K., Wang, X., Zhang, L., Mao, T., Zhang, D., Wu, Q., & Jamalipour, A. (2024). 6G Enabled Advanced Transportation Systems. IEEE Transactions on Intelligent Transportation Systems, 25(9), 10564–10580. https://doi.org/10.1109/TITS.2024.3362515

Machardy, Z., Khan, A., Obana, K., & Iwashina, S. (2018). V2X access technologies: Regulation, research, and remaining challenges. IEEE Communications Surveys and Tutorials, 20(3), 1858–1877. https://doi.org/10.1109/COMST.2018.2808444

Moer, W. Van, Björsell, N., Hamid, M., Barbé, K., & Nader, C. (2012). Saving lives by integrating cognitive radios into ambulances. 2012 IEEE International Symposium on Medical Measurements and Applications Proceedings, 1–4. https://doi.org/10.1109/MeMeA.2012.6226619

Mohandass, S., & Umamaheswari, G. (2014). Biomedical Signal Transmission using OFDM- based Cognitive Radio for Wireless Healthcare Applications. 4(3), 147–159. https://doi.org/10.6029/smartcr.2014.03.002

Nikbakht Bideh, P., Paladi, N., & Hell, M. (2019). Software-Defined Networking for Emergency Traffic Management in Smart Cities. In A. Laouti, A. Qayyum, & N. Saad Mohammad (Eds.), Vehicular Ad-hoc Networks for Smart Cities. Advances in Intelligent Systems and Computing. Springer. https://doi.org/10.1007/978-981-15-3750-9_5

Noh, S. K., Cha, B. R., Pyun, J. Y., & Choi, D. Y. (2013). Study on the Doppler shift and Channel Model for V2I, V2V in ITS. Hi-Tek Multisystems, 2(Icacsei), 245–248. https://doi.org/10.2991/icacsei.2013.61

Nyongesa, F., Djouani, K., Olwal, T., & Hamam, Y. (2015). Doppler Shift Compensation Schemes in VANETs. Mobile Information Systems, 2015. https://doi.org/10.1155/2015/438159

Ochoa, A. M. P., Asmal, P. A. C., Vasquez, L. F. G., Ordonez, J. O. O., & Gonzalez, E. J. C. (2023). Smart Healthcare Applications over 5G Networks: A Systematic Review. Applied Sciences (Switzerland), 13(1469). https://doi.org/10.3390/app13031469

Omar, M. S., & Ma, X. (2021). Performance Analysis of OCDM for Wireless Communications. IEEE Transactions on Wireless Communications, 20(7), 4032–4043. https://doi.org/10.1109/TWC.2021.3055070

Oshiro, S., Akioya, C., Yamada, H., & Wada, T. (2023). A Prototype ICI Canceling Underwater OFDM Communication System for Multi-Path Doppler Channel. Oceans Conference Record (IEEE), 23(7). https://doi.org/10.23919/OCEANS52994.2023.10337107

Pamungkas, W. (2018). Correlated Double Ring Channel Model at High Speed Environment in Vehicle to Vehicle Communications. International Conference on Information and Communications Technology, 5–10.

Pamungkas, W., & Fitrian, A. (2023). Channel Sounder in Indoor Environment with Multipath Fading using Software Defined Radio. 2023 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT), 8–14.

Pamungkas, W., & Suryani, T. (2018). Doppler effect in VANET technology on high user’s mobility. 2018 International Conference on Information and Communications Technology, ICOIACT 2018, 2018-Janua. https://doi.org/10.1109/ICOIACT.2018.8350663

Pamungkas, W., Suryani, T., Wirawan, & Affandi, A. (2021). Doppler Effect Mitigation on V2V Channels with Moving Scatterers Using Dynamic Equalization Based on the Coherence Time. International Journal of Wireless Information Networks, 0123456789. https://doi.org/10.1007/s10776-021-00513-y

Prasad, R. (2004). OFDM for Wireless Communications Systems. Artech House.

Qureshi, H. N., Manalastas, M., Ijaz, A., Imran, A., Liu, Y., & Al Kalaa, M. O. (2022). Communication Requirements in 5G-Enabled Healthcare Applications: Review and Considerations. Healthcare (Switzerland), 10(2), 1–33. https://doi.org/10.3390/healthcare10020293

Rehman, I. U., Nasralla, M. M., Ali, A., & Philip, N. (2018). Small Cell-based Ambulance Scenario for Medical Video Streaming: A 5G-health use case. 2018 15th International Conference on Smart Cities: Improving Quality of Life Using ICT and IoT, HONET-ICT 2018, 29–32. https://doi.org/10.1109/HONET.2018.8551336

Sârbu, A., Bechet, A., B?lan, T., Robu, D., Bechet, P., & Micl?u?, S. (2019). Using CCDF statistics for characterizing the radiated power dynamics in the near field of a mobile phone operating in 3G+ and 4G+ communication standards. Measurement: Journal of the International Measurement Confederation, 134, 874–887. https://doi.org/10.1016/j.measurement.2018.12.018

Schmidl, T. M., & Cox, D. C. (1997). Robust Frequency and Timing Synchronization for OFDM. IEEE TRANSACTIONS ON COMMUNICATIONS, 45(12), 1613–1621. https://doi.org/10.1109/26.650240

Schulz, P., Trasl, A., Barreto, A. N., & Fettweis, G. (2021). Efficient and Reliable Wireless Communications via Multi-Connectivity Using Rateless Codes in Single- And Multi-User Scenarios. IEEE Transactions on Wireless Communications, 20(9), 5714–5729. https://doi.org/10.1109/TWC.2021.3069669

Shao, Y., & Gunduz, D. (2023). Semantic Communications With Discrete-Time Analog Transmission: A PAPR Perspective. IEEE Wireless Communications Letters, 12(3), 510–514. https://doi.org/10.1109/LWC.2022.3232946

Shi, L., Zhu, C., Zhao, L., Yuan, S., Yao, B., & Li, X. (2020). Fast Doppler shift acquisition method for hypersonic vehicle communications. IET Communications, 14(3), 474–479. https://doi.org/10.1049/iet-com.2018.6228

Singh, K. D., Rawat, P., & Bonnin, J.-M. (2014a). Cognitive radio for vehicular ad hoc networks (CR-VANETs): Approaches and challenges. EURASIP Journal on Wireless Communications and Networking, 2014(1), 49. https://doi.org/10.1186/1687-1499-2014-49

Singh, K. D., Rawat, P., & Bonnin, J.-M. (2014b). Cognitive radio for vehicular ad hoc networks (CR-VANETs): Approaches and challenges. EURASIP Journal on Wireless Communications and Networking, 2014(1), 49. https://doi.org/10.1186/1687-1499-2014-49

Soliman, N. F., Hassan, E. S., Shaalan, A. H. A., Fouad, M. M., El-Khamy, S. E., Albagory, Y., El-Bendary, M. A. M., Al-Hanafy, W., El-Rabaie, E. S. M., Dessouky, M. I., El-Dolil, S. A., Alshebeili, S. A., & El-Samie, F. E. A. (2015). Efficient Image Communication in PAPR Distortion Cases. In Wireless Personal Communications (Vol. 83, Issue 4). Springer US. https://doi.org/10.1007/s11277-015-2568-y

?orec?u, M., ?orec?u, E., Sârbu, A., & Bechet, P. (2023). Real-Time Statistical Measurement of Wideband Signals Based on Software Defined Radio Technology. Electronics (Switzerland), 12(13). https://doi.org/10.3390/electronics12132920

Tebe, P. I., Wen, G., Li, J., Yang, Y., Tian, W., Chong, J., & Zhang, W. (2022). 5G-Enabled Medical Data Transmission in Mobile Hospital Systems. IEEE Internet of Things Journal, 9(15), 13679–13693. https://doi.org/10.1109/JIOT.2022.3143873

Usman, M. A., Philip, N. Y., & Politis, C. (2019). 5G enabled mobile healthcare for ambulances. 2019 IEEE Globecom Workshops, GC Wkshps 2019 - Proceedings, 1–6. https://doi.org/10.1109/GCWkshps45667.2019.9024584

Yakar, E., & Kilinc, H. H. (2024). Exploring the Impact of Big Data Analytics on Emergency Calls within Telecommunication Systems. Procedia Computer Science, 238, 240–247. https://doi.org/10.1016/j.procs.2024.06.021

Yang, Y., Fei, D., & Dang, S. (2017). Inter-vehicle cooperation channel estimation for IEEE 802.11p V2I communications. Journal of Communications and Networks, 19(3), 227–238. https://doi.org/10.1109/JCN.2017.000040

Zhai, Y., Xu, X., Chen, B., Lu, H., Wang, Y., Li, S., Shi, X., Wang, W., Shang, L., & Zhao, J. (2021). 5G-Network-Enabled Smart Ambulance: Architecture, Application, and Evaluation. IEEE Network, 35(1), 190–196. https://doi.org/10.1109/MNET.011.2000014

Downloads

Published

2024-12-15

How to Cite

Pamungkas, W., Fitrian, A., Larasati, S., Jayati, A. E., Ardina, E. N. ., & Hendry, J. (2024). Multimedia Transmission Technique for Smart Ambulance with multi-carrier OFDM in a V2V and V2I Channel model using Software Defined Radio Technology. Journal of Applied Engineering and Technological Science (JAETS), 6(1), 316–340. https://doi.org/10.37385/jaets.v6i1.5030