Optimizing Low-Pressure Die Casting of A356 Aluminum Alloy Wheel Rims: A Novel Side Core With Integrated Cooling System

Authors

  • Roni Kusnowo Politeknik Manufaktur Bandung
  • Hanif Azis Budiarto Politeknik Manufaktur Bandung
  • Cecep Ruskandi Politeknik Manufaktur Bandung
  • Sophiadi Gunara Politeknik Manufaktur Bandung
  • Ery Hidayat Politeknik Manufaktur Bandung
  • Muhammad Nahrowi Politeknik Manufaktur Bandung
  • Emma Dwi Ariyani Politeknik Manufaktur Bandung

DOI:

https://doi.org/10.37385/jaets.v6i1.5122

Keywords:

Side core, LPDC, Cooling system, A356, Wheel, Magmasoft

Abstract

This study explores the development of a novel side core design with an integrated cooling system for the low-pressure die casting (LPDC) of A356 aluminum alloy wheel rims in Indonesia. The objective is to reduce cycle time and minimize casting defects. The methodology involves 3D modeling using SolidWorks and simulations performed with MAGMAsoft to evaluate filling and solidification behavior, air pressure, and air entrapment. Notably, this is the first application of a cooling system in Side cores within the Indonesian automotive industry, motivated by the need to improve production efficiency and product quality, as current manufacturing processes suffer from long cycle times and high defect rates. Simulation results show a significant reduction in cycle time by 72 seconds, improving both efficiency and product quality. This study demonstrates the effectiveness of integrating cooling systems into side cores to enhance the LPDC process.

Downloads

Download data is not yet available.

References

Adeleke, A. A., Oki, M., Anyim, I. K., Ikubanni, P. P., Adediran, A. A., Balogun, A. A., Orhadahwe, T. A., Omoniyi, P. O., Olabisi, A. S., & Akinlabi, E. T. (2022). Recent Development in Casting Technology: A Pragmatic Review. Revue Des Composites et Des Matériaux Avancés, 32(2), 91–102. https://doi.org/10.18280/rcma.320206

ASM International. (1998). Metals Handbook Desk Edition (J. R. Davis, Ed.). ASM International. https://doi.org/10.31399/asm.hb.mhde2.9781627081993

Bate, C., King, P., Sim, J., & Manogharan, G. (2023). A Novel Approach to Visualize Liquid Aluminum Flow to Advance Casting Science. Materials, 16(2), 756. https://doi.org/10.3390/ma16020756

Berlanga-Labari, C., Biezma-Moraleda, M. V., & Rivero, P. J. (2020). Corrosion of cast aluminum alloys: A review. Metals, 10(10), 1–30. https://doi.org/10.3390/met10101384

Chavan, R., & Kulkarni, P. S. (2020). Die design and optimization of cooling channel position for cold chamber high pressure die casting machine. IOP Conference Series: Materials Science and Engineering, 810(1). https://doi.org/10.1088/1757-899X/810/1/012017

Cleary, P. W. (2010). Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting. Applied Mathematical Modelling, 34(11), 3189–3201. https://doi.org/10.1016/j.apm.2010.02.012

Dong, G., Li, S., Ma, S., Zhang, D., Bi, J., Wang, J., Starostenkov, M. D., & Xu, Z. (2023a). Process optimization of A356 aluminum alloy wheel hub fabricated by low-pressure die casting with simulation and experimental coupling methods. Journal of Materials Research and Technology, 24, 3118–3132. https://doi.org/10.1016/j.jmrt.2023.03.214

Dong, G., Li, S., Ma, S., Zhang, D., Bi, J., Wang, J., Starostenkov, M. D., & Xu, Z. (2023b). Process optimization of A356 aluminum alloy wheel hub fabricated by low-pressure die casting with simulation and experimental coupling methods. Journal of Materials Research and Technology, 24, 3118–3132. https://doi.org/10.1016/j.jmrt.2023.03.214

Dong, G., Li, S., Ma, S., Zhang, D., Bi, J., Wang, J., Starostenkov, M. D., & Xu, Z. (2023c). Process optimization of A356 aluminum alloy wheel hub fabricated by low-pressure die casting with simulation and experimental coupling methods. Journal of Materials Research and Technology, 24, 3118–3132. https://doi.org/10.1016/j.jmrt.2023.03.214

Dybowski, B., Kie?bus, A., & Poloczek, ?. (2023). Effects of die-casting defects on the blister formation in high-pressure die-casting aluminum structural components. Engineering Failure Analysis, 150, 107223. https://doi.org/10.1016/j.engfailanal.2023.107223

Fan, P., Cockcroft, S. L., Maijer, D. M., Yao, L., Reilly, C., & Phillion, A. B. (2019). Porosity Prediction in A356 Wheel Casting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 50(5), 2421–2435. https://doi.org/10.1007/s11663-019-01642-9

Fang, H., Liu, H., Mo, Z., Huang, C., Chen, Z., & Lu, Z. (2024). Defect prediction of large-size aluminum alloy wheel hub in low pressure die casting process. In W. Chen & X. Liu (Eds.), Fourth International Conference on Mechanical Engineering, Intelligent Manufacturing, and Automation Technology (MEMAT 2023) (p. 52). SPIE. https://doi.org/10.1117/12.3026157

Guerra, F. V., Bedolla-Jacuinde, A., Valdes-Vera, H., Quintero-Ortiz, J., Zarate-Rangel, A., & Pacheco-Cedeño, J. S. (2023). Measurement of Air Entrainment and its Effect on the Microstructure and Mechanical Properties of a A356 Aluminum Alloy. International Journal of Metalcasting, 17(3), 2109–2127. https://doi.org/10.1007/s40962-022-00924-4

Guofa, M., Xiangyu, L., Kuangfei, W., & Hengzhi, F. (n.d.). Numerical simulation of low pressure die-casting aluminum wheel. In CHINA FOUNDRY (Vol. 48, Issue 1).

Guofa, M., Xiangyu, L., Kuangfei, W., & Hengzhi, F. (2009a). Numerical simulation of low pressure die-casting aluminum wheel. CHINA FOUNDRY, 48(1). https://doaj.org/article/173bf1de795a466e997c0e50aff84824

Guofa, M., Xiangyu, L., Kuangfei, W., & Hengzhi, F. (2009b). Numerical simulation of low pressure die-casting aluminum wheel. CHINA FOUNDRY, 48(1). https://doaj.org/article/173bf1de795a466e997c0e50aff84824

Gursoy, O., Nordmak, A., Syvertsen, F., Colak, M., Tur, K., & Dispinar, D. (2021). Role of metal quality and porosity formation in low pressure die casting of A356: Experimental observations. Archives of Foundry Engineering, 21(1), 5–10. https://doi.org/10.24425/afe.2021.136071

He, Q., Su, Z., Xie, Z., Zhong, Z., & Yao, Q. (2017). A Novel Principle for Molten Steel Level Measurement in Tundish by Using Temperature Gradient. IEEE Transactions on Instrumentation and Measurement, 66(7), 1809–1819. https://doi.org/10.1109/TIM.2017.2668598

He, X., Hu, C., Wang, Z., Zhao, H., Wei, X., & Dong, H. (2020). Carbide transformation behaviors of a Cr-Mo-V secondary hardening steel during over-ageing. Materials Research Express, 7(3). https://doi.org/10.1088/2053-1591/ab7c86

He, Y., Lu, D., Li, Z., & Lu, D. (2023a). Multi-Objective Optimization of The Low-Pressure Casting of Large-Size Aluminum Alloy Wheels through a Systematic Optimization Idea. Materials, 16(18). https://doi.org/10.3390/ma16186223

He, Y., Lu, D., Li, Z., & Lu, D. (2023b). Multi-Objective Optimization of The Low-Pressure Casting of Large-Size Aluminum Alloy Wheels through a Systematic Optimization Idea. Materials, 16(18). https://doi.org/10.3390/ma16186223

Huang, J. M., Zhao, H. D., & Chen, Z. M. (2019). Microstructure and Properties of A356 Alloy Wheels Fabricated by Low-Pressure Die Casting with Local Squeeze. Journal of Materials Engineering and Performance, 28(4), 2137–2146. https://doi.org/10.1007/s11665-019-03993-5

Iwata, Y., Dong, S., Sugiyama, Y., & Iwahori, H. (2013). Effects of solidification behavior during filling on surface defects of aluminum alloy die casting+. Materials Transactions, 54(10), 1944–1950. https://doi.org/10.2320/matertrans.F-M2013819

Iwata, Y., Dong, S., Sugiyama, Y., & Iwahori, H. (2014). Change in molten metal pressure and its effect on defects of aluminum alloy die castings. Materials Transactions, 55(2), 311–317. https://doi.org/10.2320/matertrans.F-M2013838

J. Gilbert Kaufman;, & Elwin L. Rooy. (2004). Aluminum Casting Alloys. In Aluminum Alloy Castings (pp. 7–20). ASM International. https://doi.org/10.31399/asm.tb.aacppa.t51140007

Jadhav, A. R., Hujare, D. P., & Hujare, P. P. (2021a). Design and optimization of gating system, modification of cooling system position and flow simulation for cold chamber high pressure die casting machine. Materials Today: Proceedings, 46(xxxx), 7175–7181. https://doi.org/10.1016/j.matpr.2020.11.346

Jadhav, A. R., Hujare, D. P., & Hujare, P. P. (2021b). Design and optimization of gating system, modification of cooling system position and flow simulation for cold chamber high pressure die casting machine. Materials Today: Proceedings, 46(xxxx), 7175–7181. https://doi.org/10.1016/j.matpr.2020.11.346

Jenny Estrada. (2018, April). Parts of Your Wheels/Rims. OEM Wheel Shops.

K?rm?z?göl S. Fatih, Özayd?n Onur, Acarer Sercan, & Armakan Elvan. (2019a). Fluid Flow and Heat Transfer Simulations of the Cooling System in Low Pressure Die Casting. Celal Bayar University Journal of Science, 16(2), 161–166. https://doi.org/10.18466/cbayarfbe.641177

K?rm?z?göl S. Fatih, Özayd?n Onur, Acarer Sercan, & Armakan Elvan. (2019b). Fluid Flow and Heat Transfer Simulations of the Cooling System in Low Pressure Die Casting. Celal Bayar University Journal of Science, 16(2), 161–166. https://doi.org/10.18466/cbayarfbe.641177

Kridli, G. T., Friedman, P. A., & Boileau, J. M. (2020a). Manufacturing processes for light alloys. In Materials, Design and Manufacturing for Lightweight Vehicles. LTD. https://doi.org/10.1016/B978-0-12-818712-8.00007-0

Kridli, G. T., Friedman, P. A., & Boileau, J. M. (2020b). Manufacturing processes for light alloys. In Materials, Design and Manufacturing for Lightweight Vehicles. LTD. https://doi.org/10.1016/B978-0-12-818712-8.00007-0

Kumar, J. Y., Gopi, S., & Amirthagadeswaran, K. (2023a). Redesigning and numerical simulation of gating system to reduce cold shut defect in submersible pump part castings. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(3), 971–981. https://doi.org/10.1177/09544089221142185

Kumar, J. Y., Gopi, S., & Amirthagadeswaran, K. (2023b). Redesigning and numerical simulation of gating system to reduce cold shut defect in submersible pump part castings. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(3), 971–981. https://doi.org/10.1177/09544089221142185

Kusnowo, R., Budiarto, H., Ruskandi, C., & Hermana, G. (2023a). Comparative Study of Microstructure and Mechanical Properties of Hot Work Tool Steel SKD 6 with Different Manufacturing Process. 746–750. https://doi.org/10.5220/0011876100003575

Kusnowo, R., Budiarto, H., Ruskandi, C., & Hermana, G. (2023b). Comparative Study of Microstructure and Mechanical Properties of Hot Work Tool Steel SKD 6 with Different Manufacturing Process. 746–750. https://doi.org/10.5220/0011876100003575

Kusnowo, R., & Hidayat, E. (2021). Perancangan Coran Baja Cor SKD6 Menggunakan Simulasi Perangkat Lunak Pada Produk Side Core SD25R. Jurnal Teknologi Manufaktur, 13(01).

Kusnowo, R., Hidayat, E., & Bandung, P. M. (2021). Perancangan Coran Baja Cor SKD6 Menggunakan Simulasi Perangkat Lunak Pada Produk Side Core SD25R. Jurnal Teknologi Manufaktur, 13(01).

Latte, M. R., & Chougule, P. D. (2017). Blow-hole Defect Analysis of Cylinder Block-A Case Study. International Journal of Engineering Research and Technology, 10. http://www.irphouse.com

Li, S., Xiong, S., Mei, L., & Allison, J. (2010). Numerical simulation of air entrapment phenomenon during mold filling of high pressure die casting process. Jinshu Xuebao/Acta Metallurgica Sinica, 46(5), 554–560. https://doi.org/10.3724/SP.J.1037.2009.00683

Li, Y., Liu, J., Zhou, H., & Huang, W. (2022). Study on the Distribution Characteristics of Microstructure and Mechanical Properties Within the Cylinder Head of Low-Pressure Sand Cast Aluminum Alloy. International Journal of Metalcasting, 16(3), 1252–1264. https://doi.org/10.1007/s40962-021-00678-5

Liu, X., Cai, Z., Zheng, Y., El Fakir, O., Gandra, J., & Wang, L. (2020). A general IHTC model for hot/warm aluminium stamping. Applied Thermal Engineering, 181, 115619. https://doi.org/10.1016/j.applthermaleng.2020.115619

Majerník, J., & Podaril, M. (2019). Influence of runner geometry on the gas entrapment in volume of pressure die cast. Archives of Foundry Engineering, 19(3), 33–38. https://doi.org/10.24425/afe.2019.129626

Meng, Y., Sugiyama, S., & Yanagimoto, J. (2012). Journal of Materials Processing Technology Microstructural evolution during RAP process and deformation behavior of semi-solid SKD61 tool steel. Journal of Materials Processing Tech., 212(8), 1731–1741. https://doi.org/10.1016/j.jmatprotec.2012.04.003

Mi, G., Liu, X., Wang, K., & Fu, H. (2009). Numerical simulation of low pressure die-casting aluminum wheel. China Foundry, 6(1), 48–52.

Nagasankar P, Sathiyamoorthy V, Gurusamy P, Vinothkanna P, & Manibharathi D. (2018). Reduction of Blowholesin Aluminium High Pressure Die Casting Machine. In International Journal of Engineering & Technology (Vol. 7). www.sciencepubco.com/index.php/IJET

Ou, J., Wei, C., Cockcroft, S., Maijer, D., Zhu, L., Lateng, A., Li, C., & Zhu, Z. (2020). Advanced process simulation of low pressure die cast a356 aluminum automotive wheels—part ii modeling methodology and validation. Metals, 10(11), 1–24. https://doi.org/10.3390/met10111418

Romansyah, R. Y., Budiarto, H. A., Erlangga, Y. Y., & Safrudin, Y. N. (2023). FAILURE INVESTIGATION OF BLANK HOLDER FORCE (BHF) CONTROL IN THE OUTSIDE BRACKET FOR FRONT SEAT. Journal of Applied Engineering and Technological Science, 4(2). https://doi.org/10.37385/jaets.v4i2.1779

Samuel, A. M., Samuel, E., Songmene, V., & Samuel, F. H. (2023a). A Review on Porosity Formation in Aluminum-Based Alloys. Materials, 16(5), 2047. https://doi.org/10.3390/ma16052047

Samuel, A. M., Samuel, E., Songmene, V., & Samuel, F. H. (2023b). A Review on Porosity Formation in Aluminum-Based Alloys. Materials, 16(5), 2047. https://doi.org/10.3390/ma16052047

Seydani, M. Z., Krimi, A., Khelladi, S., Bedel, M., & El Mansori, M. (2024). 3D numerical simulation and experimental validation of resin-bonded sand gravity casting: Filling, cooling, and solidification with SPH and ProCAST approaches. Thermal Science and Engineering Progress, 47, 102329. https://doi.org/10.1016/j.tsep.2023.102329

Su, L. P., Zeng, J. M., Chen, J., & Gan, W. K. (2012). Research on Simplified Reverse Method for Interfacial Heat Transfer Coefficient (IHTC). Applied Mechanics and Materials, 268–270, 974–977. https://doi.org/10.4028/www.scientific.net/AMM.268-270.974

Uyan, T., Otto, K., Silva, M. S., Vilaça, P., & Armakan, E. (2023a). Industry 4.0 Foundry Data Management and Supervised Machine Learning in Low-Pressure Die Casting Quality Improvement. International Journal of Metalcasting, 17(1), 414–429. https://doi.org/10.1007/s40962-022-00783-z

Uyan, T., Otto, K., Silva, M. S., Vilaça, P., & Armakan, E. (2023b). Industry 4.0 Foundry Data Management and Supervised Machine Learning in Low-Pressure Die Casting Quality Improvement. International Journal of Metalcasting, 17(1), 414–429. https://doi.org/10.1007/s40962-022-00783-z

Vandersluis, E., Bois-Brochu, A., Ravindran, C., & Chiesa, F. (2020). Mechanical Properties and Conductivity of Low-Pressure Die-Cast 319 Aluminum Prepared with Hot Isostatic Pressing, Thermal Treatment, or Chemical Treatment. Journal of Materials Engineering and Performance, 29(4), 2335–2345. https://doi.org/10.1007/s11665-020-04743-8

Vossel, T., Wolff, N., Pustal, B., & Bührig-Polaczek, A. (2020). Influence of Die Temperature Control on Solidification and the Casting Process. International Journal of Metalcasting, 14(4), 907–925. https://doi.org/10.1007/s40962-019-00391-4

Waghmare, D. B., & Bhatia, S. (2019). Industrial Case Study of Low-Pressure Die Casting of AlSi9Cu1Mg Aluminium Alloy to Reduce Casting Defects. Reason-A Technical Journal, 18(0), 50. https://doi.org/10.21843/reas/2019/50-60/196166

Wang, G. G., & Weiler, J. P. (2023). Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications. Journal of Magnesium and Alloys, 11(1), 78–87. https://doi.org/10.1016/j.jma.2022.10.001

Wang, X., Chen, R., Wang, Q., Wang, S., Li, Y., Su, Y., Xia, Y., Zhou, G., Li, G., & Qu, Y. (2023). Influence of Casting Temperature and Mold Preheating Temperature on Centrifugal Casting by Numerical Simulation. Journal of Materials Engineering and Performance, 32(15), 6786–6809. https://doi.org/10.1007/s11665-022-07608-4

Xue, S., Yang, T., Guo, R., Deng, A., Liu, X., & Zheng, L. (2021). Crack analysis of Cr-Mo-V-Si medium-carbon alloy steel in casting die. Engineering Failure Analysis, 120(July 2020), 105083. https://doi.org/10.1016/j.engfailanal.2020.105083

Ya?c?, T., Cöcen, Ü., & Çulha, O. (2021a). Aluminum Alloy Development for Wheel Production by Low Pressure Die Casting with New Generation Computational Materials Engineering Approaches. Archives of Foundry Engineering, 35–46. https://doi.org/10.24425/afe.2021.138677

Ya?c?, T., Cöcen, Ü., & Çulha, O. (2021b). Aluminum Alloy Development for Wheel Production by Low Pressure Die Casting with New Generation Computational Materials Engineering Approaches. Archives of Foundry Engineering, 35–46. https://doi.org/10.24425/afe.2021.138677

Zhang, Z., Liu, J., Chen, J., Wen, F., Jia, R., & Ma, Q. (2023). Optimization of residual stress in low-pressure casting of ZL205A alloys. Journal of Manufacturing Processes, 99, 338–350. https://doi.org/10.1016/j.jmapro.2023.05.040

Downloads

Published

2024-12-15

How to Cite

Kusnowo, R., Budiarto, H. A., Ruskandi, C., Gunara, S., Hidayat, E., Nahrowi, M., & Ariyani, E. D. (2024). Optimizing Low-Pressure Die Casting of A356 Aluminum Alloy Wheel Rims: A Novel Side Core With Integrated Cooling System . Journal of Applied Engineering and Technological Science (JAETS), 6(1), 281–299. https://doi.org/10.37385/jaets.v6i1.5122