Feasibility Assessment of a Sustainable Building Applied Photovoltaic (BAPV) System With Solar Tracking Features Based on Techno-Economic Criteria: Malaysia Case Study
DOI:
https://doi.org/10.37385/jaets.v6i1.5156Keywords:
Single-Axis Solar Tracking System, Fixed Solar System, BAPV, Techno-Economic AnalysesAbstract
In line with the increase attention regarding building applied photovoltaic system, the research in enhancing its performance is also critical to be explored, one of them is the utilization of solar tracking system. The goal of this paper is to analyze the feasibility of using a tracking system for increasing the PV output power and analyzing the energy sustainability aspects on a building applied photovoltaic system. A feasibility study considering three scenarios of PV capacities and propose two options in either renewing or reusing the PV panels to extend its life time. Based on the results, the tracking system contributes to the improvement of 18% in the energy generation. On the technical aspects, renewing the PV panels with a large capacity of up to 30 kW-peak is the most feasible option to meet the electricity demand on the building. In the meantime, the reuse option with large capacity is the best with the net present value is about USD 24,639.22 or 34% more than the option of renewal the PV panels. In summary, reusing the panel is beneficial from the economic and environment standpoints as it represents sustainable development of power generation. Since the realistic feasibility cases and analyses used, the novelty in terms of the approach is beneficial for the future investigations on adding a tracking system, keeping or replacing the PV system for sustainable aspect while improving its output power.
Downloads
References
Abdulmula, A. M., Sopian, K., Haw, L. C., & Fazlizan, A. (2019). Performance evaluation of standalone double axis solar tracking system with? maximum light detection MLD for telecommunication towers in Malaysia. International Journal of Power Electronics and Drive Systems, 10(1), 444. DOI: 10.11591/ijpeds.v10.i1.pp444-453
Ahmad, S., Shafie, S., Ab Kadir, M. Z. A., & Ahmad, N. S. (2013). On the effectiveness of time and date-based sun positioning solar collector in tropical climate: A case study in Northern Peninsular Malaysia. Renewable and Sustainable Energy Reviews, 28, 635-642. https://doi.org/10.1016/j.rser.2013.07.044
Akhter, M. N., Mekhilef, S., Mokhlis, H., Olatomiwa, L., & Muhammad, M. A. (2020). Performance assessment of three grid-connected photovoltaic systems with combined capacity of 6.575 kWp in Malaysia. Journal of Cleaner Production, 277. https://doi.org/10.1016/j.jclepro.2020.123242
Alazazmeh, A., Ahmed, A., Siddiqui, M., & Asif, M. (2022). Real-time data-based performance analysis of a large-scale building applied PV system. Energy Reports, 8, 15408-15420. https://doi.org/10.1016/j.egyr.2022.11.057
Amelia, A., Irwan, Y., Safwati, I., Leow, W., Mat, M., & Rahim, M. S. A. (2020). Technologies of solar tracking systems: A review. IOP Conference Series: Materials Science and Engineering, 767 012052. DOI 10.1088/1757-899X/767/1/012052
Antonanzas, J., Arbeloa-Ibero, M., & Quinn, J. (2019). Comparative life cycle assessment of fixed and single axis tracking systems for photovoltaics. Journal of Cleaner Production, 240, 118016. https://doi.org/10.1016/j.jclepro.2019.118016
Burduhos, B., Toma, C., Neagoe, M., & Moldovan, M. (2011). PSEUDO-EQUATORIAL TRACKING OPTIMIZATION FOR SMALL PHOTOVOLTAIC PLATFORMS FROM TORONTO/CANADA. Environmental Engineering & Management Journal (EEMJ), 10(8). DOI 0.30638/eemj.2011.154
Chong, S.-H., Chandren, N. N., & Soon, C. R. A. (2019). Output energy maximization of a single axis photovoltaic solar tracking system: experimental verification. International Journal of Power Electronics and Drive Systems (IJPEDS), 10(3). https://doi.org/10.11591/ijpeds.v10.i3.pp1655-1661
Elnosh, A., Al-Ali, H. O., John, J. J., Alnuaimi, A., Ubinas, E. R., Stefancich, M., & Banda, P. (2018). Field study of factors influencing performance of PV modules in buildings (BIPV/BAPV) installed in UAE IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), DOI: 10.1109/PVSC.2018.8547298
Erixno, O., & Rahim, N. A. (2020). A techno-environmental assessment of hybrid photovoltaic-thermal based combined heat and power system on a residential home. Renewable Energy, 156, 1186-1202. https://doi.org/10.1016/j.renene.2020.04.101
Geisz, J. F., France, R. M., Schulte, K. L., Steiner, M. A., Norman, A. G., Guthrey, H. L., Young, M. R., Song, T., & Moriarty, T. (2020). Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy, 5(4), 326-335. https://doi.org/10.1038/s41560-020-0598-5
Ghazali M, A., & Abdul Rahman, A. M. (2012). The Performance of Three Different Solar Panels for Solar Electricity Applying Solar Tracking Device under the Malaysian Climate Condition. Energy and Environment Research, 2(1). https://doi.org/10.5539/eer.v2n1p235
Gholami, H., Røstvik, H. N., & Müller-Eie, D. (2019). Holistic economic analysis of building integrated photovoltaics (BIPV) system: Case studies evaluation. Energy and Buildings, 203. https://doi.org/10.1016/j.enbuild.2019.109461
Hafez, A. Z., Yousef, A. M., & Harag, N. M. (2018). Solar tracking systems: Technologies and trackers drive types – A review. Renewable and Sustainable Energy Reviews, 91, 754-782. https://doi.org/10.1016/j.rser.2018.03.094
Imran, H., Riaz, M. H., & Butt, N. Z. (2020). Optimization of single-axis tracking of photovoltaic modules for agrivoltaic systems. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC),
Jamroen, C., Fongkerd, C., Krongpha, W., Komkum, P., Pirayawaraporn, A., & Chindakham, N. (2021). A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis. Applied Energy, 299. https://doi.org/10.1016/j.apenergy.2021.117295
Jayathissa, P., Jansen, M., Heeren, N., Nagy, Z., & Schlueter, A. (2016). Life cycle assessment of dynamic building integrated photovoltaics. Solar Energy Materials and Solar Cells, 156, 75-82. https://doi.org/10.1016/j.solmat.2016.04.017
Kang, H., Hong, T., Jung, S., & Lee, M. (2019). Techno-economic performance analysis of the smart solar photovoltaic blinds considering the photovoltaic panel type and the solar tracking method. Energy and Buildings, 193, 1-14. https://doi.org/10.1016/j.enbuild.2019.03.042
Khatib, T., Mohamed, A., Mahmoud, M., & Sopian, K. (2015). Optimization of the Tilt Angle of Solar Panels for Malaysia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(6), 606-613. https://doi.org/10.1080/15567036.2011.588680
Kumar, N. M., Samykano, M., & Karthick, A. (2021). Energy loss analysis of a large scale BIPV system for university buildings in tropical weather conditions: A partial and cumulative performance ratio approach. Case Studies in Thermal Engineering, 25. https://doi.org/10.1016/j.csite.2021.100916
Lau, F., & Kuziemsky, C. (2016). Handbook of eHealth evaluation: an evidence-based approach.
Lee, J., & Rahim, N. A. (2013). Performance comparison of dual-axis solar tracker vs static solar system in Malaysia. 2013 IEEE Conference on Clean Energy and Technology (CEAT), DOI: 10.1109/CEAT.2013.6775608
Lee, J. F., Rahim, N. A., & Al-Turki, Y. A. (2013). Performance of Dual-Axis Solar Tracker versus Static Solar System by Segmented Clearness Index in Malaysia. International Journal of Photoenergy, 2013, 1-13. https://doi.org/10.1155/2013/820714
Mahendran, M., Ong, H., Lee, G., & Thanikaikumaran, K. (2013). An experimental comparison study between single-axis tracking and fixed photovoltaic solar panel efficiency and power output: Case study in east coast Malaysia. Sustainable Development Conference, Bangkok, Thailand,
Mohamad, A., Mhamdi, H., Amin, N., Izham, M., Aziz, N., & Chionh, S. (2021). A review of automatic solar tracking systems. Journal of Physics: Conference Series, 2051 012010. DOI 10.1088/1742-6596/2051/1/012010
Mohammad, S. T., Al-Kayiem, H. H., Aurybi, M. A., & Khlief, A. K. (2020). Measurement of global and direct normal solar energy radiation in Seri Iskandar and comparison with other cities of Malaysia. Case Studies in Thermal Engineering, 18. https://doi.org/10.1016/j.csite.2020.100591
Moldovan, M., Burduhos, B. G., & Visa, I. (2023). Efficiency Assessment of Five Types of Photovoltaic Modules Installed on a Fixed and on a Dual-Axis Solar-Tracked Platform. Energies, 16(3). https://doi.org/10.3390/en16031229
Moradi, M. H., Hajinazari, M., Jamasb, S., & Paripour, M. (2013). An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming. Energy, 49, 86-101. https://doi.org/10.1016/j.energy.2012.10.005
Ramadhani, F., Bakar, K. A., Hussain, M., Erixno, O., & Nazir, R. (2017). Optimization with traffic-based control for designing standalone streetlight system: A case study. Renewable Energy, 105, 149-159. https://doi.org/10.1016/j.renene.2016.12.050
Ramadhani, F., Hussain, M. A., Mokhlis, H., Fazly, M., & Ali, J. M. (2019). Evaluation of solid oxide fuel cell based polygeneration system in residential areas integrating with electric charging and hydrogen fueling stations for vehicles. Applied Energy, 238, 1373-1388. https://doi.org/10.1016/j.apenergy.2019.01.150
Ramadhani, F., Hussain, M. A., Mokhlis, H., & Illias, H. A. (2021). Two-stage fuzzy-logic-based for optimal energy management strategy for SOFC/PV/TEG hybrid polygeneration system with electric charging and hydrogen fueling stations. Journal of Renewable and Sustainable Energy, 13(2), 024301. https://doi.org/10.1063/5.0010832
Reza, N., & Mondol, N. (2021). Design and Implementation of an Automatic Single Axis Tracking with Water-Cooling System to Improve the Performance of Solar Photovoltaic Panel 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), Rajshahi, Bangladesh, 2021, pp. 1-6, doi: 10.1109/ACMI53878.2021.9528189.
Rivai, A., Abd Rahim, N., Mohamad Elias, M. F., & Jamaludin, J. (2020). Analysis of Photovoltaic String Failure and Health Monitoring with Module Fault Identification. Energies, 13(1), 100. https://www.mdpi.com/1996-1073/13/1/100
Sarkar, D., Kumar, A., & Sadhu, P. K. (2021). Design and Analysis of a 1.1 kW BIPV-Based Residential Grid-Connected System. In Advances in Smart Grid Automation and Industry 4.0 (pp. 679-690). Springer. DOI https://doi.org/10.1007/978-981-15-7675-1_68
SEDA. (2023). FiT Rates for Solar PV (Community) (21 years from FiT Commencement Date). Retrieved from https://www.seda.gov.my/reportal/fit/
Sharma, A., Vaidya, V., & Jamuna, K. (2017). Design of an automatic solar tracking controller: Solar tracking controller. 2017 International Conference on Power and Embedded Drive Control (ICPEDC), DOI: 10.1109/ICPEDC.2017.8081141
Sidek, M. H. M., Azis, N., Hasan, W. Z. W., Ab Kadir, M. Z. A., Shafie, S., & Radzi, M. A. M. (2017). Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. Energy, 124, 160-170. https://doi.org/10.1016/j.energy.2017.02.001
Singh, D., Chaudhary, R., & Karthick, A. (2021). Review on the progress of building-applied/integrated photovoltaic system. Environ Sci Pollut Res Int, 28(35), 47689-47724. https://doi.org/10.1007/s11356-021-15349-5
Solar Panel Efficiency - Pick the Most Efficient Solar Panels. (2024). Electrum. Retrieved 11 January 2024 from https://www.solar.com/learn/solar-panel-efficiency/
Svetozarevic, B., Nagy, Z., Hofer, J., Jacob, D., Begle, M., Chatzi, E., & Schlueter, A. (2016). SoRo-Track: A two-axis soft robotic platform for solar tracking and building-integrated photovoltaic applications. 2016 IEEE International Conference on Robotics and Automation (ICRA), DOI: 10.1109/ICRA.2016.7487700
Tan, M.-H., Wang, T.-K., Wong, C.-W., Lim, B.-H., Yew, T.-K., Tan, W.-C., Lai, A.-C., & Chong, K.-K. (2019). Optimization study of parasitic energy losses in photovoltaic system with dual-axis solar tracker located at different latitudes. Energy Procedia, 158, 302-308. https://doi.org/10.1016/j.egypro.2019.01.093
T?rm?kç?, C. A., & Yavuz, C. (2019). Environmental life cycle analysis of a fixed PV energy system and a two-axis sun tracking PV energy system in a low-energy house in Turkey. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-11-2018-0058
Vaziri Rad, M. A., Toopshekan, A., Rahdan, P., Kasaeian, A., & Mahian, O. (2020). A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations. Renewable and Sustainable Energy Reviews, 129. https://doi.org/10.1016/j.rser.2020.109923
Visa, I., Diaconescu, D., Popa, V., Burduhos, B., & Saulescu, R. (2009). The synthesis of a linkage with linear actuator for solar tracking with large angular stroke. Proceedings of EUCOMES 08: The Second European Conference on Mechanism Science, DOI https://doi.org/10.1007/978-1-4020-8915-2_54
Weerasinghe, R. P. N. P., Yang, R. J., Wakefield, R., Too, E., Le, T., Corkish, R., Chen, S., & Wang, C. (2021). Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries. Renewable and Sustainable Energy Reviews, 137. https://doi.org/10.1016/j.rser.2020.110622
Yatim, Y., Yahya, M. W., Tajuddin, M. F. N., Ismail, B., & Sulaiman, S. I. (2017). Tecno-economic analysis of PV module selection for residential BIPV with net metering implementation in Malaysia. 2017 IEEE 15th Student Conference on Research and Development (SCOReD), DOI: 10.1109/SCORED.2017.8305364