Corrosion Rate of ASTM A53 Steel in Seawater Influenced by Variation in Concentration of Mangifera Indica L. Peel Extract
DOI:
https://doi.org/10.37385/jaets.v6i1.5182Keywords:
Inhibition, Corrosion, ASTM A53 Steel, Mango Peel, Mangifera Indica L. Peel ExtractAbstract
This study investigates the effectiveness of mango peel extract as a corrosion inhibitor for ASTM A53 steel, which is widely used in the oil and gas industry. The research aims to evaluate how different concentrations of mango peel extract can mitigate corrosion in seawater from Pangandaran, thereby extending the lifespan of steel components in marine environments. Corrosion tests were conducted through immersion experiments over durations of 1, 4, 9, 16, and 25 days with mango peel extract concentrations of 0 ppm, 20 ppm, 40 ppm, 60 ppm, and 80 ppm. Analytical methods including X-ray diffraction (XRD), Optical Microscopy (OM), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) were used to examine the steel's surface morphology and chemical composition. The results demonstrate that mango peel extract significantly reduces the corrosion rate of ASTM A53 steel, with the highest efficiency achieved at 40 ppm (58.15%) and a notable reduction at 60 ppm (56.4%). The inhibition is attributed to chemical absorption, which lowers the steel's corrosion potential. These findings suggest that mango peel extract is an effective, eco-friendly corrosion inhibitor, offering practical and theoretical benefits for corrosion management. This research supports the use of bio-based inhibitors and may inform future industrial corrosion protection strategies.
Downloads
References
Al-Amiery, A., Wan Isahak, W. N. R., & Al-Azzawi, W. K. (2024). Sustainable corrosion Inhibitors: A key step towards environmentally responsible corrosion control. Ain Shams Engineering Journal, 15(5), 102672. https://doi.org/10.1016/j.asej.2024.102672
Alamri, A. H. (2020). Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines – An overview. Engineering Failure Analysis, 116, 104735. https://doi.org/10.1016/j.engfailanal.2020.104735
Albahri, M. B., Barifcani, A., Iglauer, S., Lebedev, M., O’Neil, C., Salgar-Chaparro, S. J., & Machuca, L. L. (2021). Investigating the mechanism of microbiologically influenced corrosion of carbon steel using X-ray micro-computed tomography. Journal of Materials Science, 56(23), 13337–13371. https://doi.org/10.1007/s10853-021-06112-9
Al-Moubaraki, A. H., & Obot, I. B. (2021). Top of the line corrosion: causes, mechanisms, and mitigation using corrosion inhibitors. Arabian Journal of Chemistry, 14(5), 103116. https://doi.org/10.1016/j.arabjc.2021.103116
Amaya-Gómez, R., Bastidas-Arteaga, E., Sánchez-Silva, M., Schoefs, F., & Muñoz, F. (2024). Onshore Pipeline Basic Context. In Corrosion and Reliability Assessment of Inspected Pipelines (pp. 17–40). Springer International Publishing. https://doi.org/10.1007/978-3-031-43532-4_2
Anandkumar, B., Krishna, N. G., Solomon, R. V., Nandakumar, T., & Philip, J. (2023). Synergistic enhancement of corrosion protection of carbon steels using corrosion inhibitors and biocides: Molecular adsorption studies, DFT calculations and long-term corrosion performance evaluation. Journal of Environmental Chemical Engineering, 11(3), 109842. https://doi.org/10.1016/j.jece.2023.109842
Aslam, R., Mobin, M., Zehra, S., & Aslam, J. (2022). A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments. Journal of Molecular Liquids, 364, 119992. https://doi.org/10.1016/j.molliq.2022.119992
Bahmani, A., Arthanari, S., & Shin, K. S. (2020). Formulation of corrosion rate of magnesium alloys using microstructural parameters. Journal of Magnesium and Alloys, 8(1), 134–149. https://doi.org/10.1016/j.jma.2019.12.001
Bender, R., Féron, D., Mills, D., Ritter, S., Bäßler, R., Bettge, D., De Graeve, I., Dugstad, A., Grassini, S., Hack, T., Halama, M., Han, E., Harder, T., Hinds, G., Kittel, J., Krieg, R., Leygraf, C., Martinelli, L., Mol, A., … Zheludkevich, M. (2022). Corrosion challenges towards a sustainable society. Materials and Corrosion, 73(11), 1730–1751. https://doi.org/10.1002/maco.202213140
Bukhari, Amer. O., Bashar, M., Aladawy, Ahmed. S., Goh, Serena. L. M., & Sarmah, P. (2022, February 21). Review of Non-Metallic Pipelines in Oil & Gas Applications - Challenges & Way Forward. Day 3 Wed, February 23, 2022. https://doi.org/10.2523/IPTC-22301-MS
Chaubey, N., Savita, Qurashi, A., Chauhan, D. S., & Quraishi, M. A. (2021). Frontiers and advances in green and sustainable inhibitors for corrosion applications: A critical review. Journal of Molecular Liquids, 321, 114385. https://doi.org/10.1016/j.molliq.2020.114385
Chen, L., & Su, R. K. L. (2021). Corrosion rate measurement by using polarization resistance method for microcell and macrocell corrosion: Theoretical analysis and experimental work with simulated concrete pore solution. Construction and Building Materials, 267, 121003. https://doi.org/10.1016/j.conbuildmat.2020.121003
Gaidis, J. M. (2004). Chemistry of corrosion inhibitors. Cement and Concrete Composites, 26(3), 181–189. https://doi.org/10.1016/S0958-9465(03)00037-4
Ituen, E., Ekemini, E., Yuanhua, L., Li, R., & Singh, A. (2020). Mitigation of microbial biodeterioration and acid corrosion of pipework steel using Citrus reticulata peels extract mediated copper nanoparticles composite. International Biodeterioration & Biodegradation, 149, 104935. https://doi.org/10.1016/j.ibiod.2020.104935
Kadhim. (2021). Corrosion inhibitors. A review. International Journal of Corrosion and Scale Inhibition, 10(1). https://doi.org/10.17675/2305-6894-2021-10-1-3
Katysheva, E. (2023). Analysis of the Interconnected Development Potential of the Oil, Gas and Transport Industries in the Russian Arctic. Energies, 16(7), 3124. https://doi.org/10.3390/en16073124
Khan, M. A. A., Irfan, O. M., Djavanroodi, F., & Asad, M. (2022). Development of Sustainable Inhibitors for Corrosion Control. Sustainability, 14(15), 9502. https://doi.org/10.3390/su14159502
Lauzuardy, J., Agus Basuki, E., Martides, E., Septianissa, S., Prawara, B., Dedi, Junianto, E., & Riyanto, E. (2024). MICROSTRUCTURE CHARACTERISTICS OF Cr3C2-NiCr COATINGS DEPOSITED WITH THE HIGH-VELOCITY OXY-FUEL THERMAL-SPRAY TECHNIQUE. Materiali in Tehnologije, 58(2). https://doi.org/10.17222/mit.2023.869
Lun, P.-Y., Lu, Z.-H., Zhang, X., Zhang, Q., & Zhao, R. (2021). Experimental study and suggested mathematical model for chloride-induced reinforcement corrosion rate. Structures, 34, 2014–2029. https://doi.org/10.1016/j.istruc.2021.08.099
Malaret, F. (2022). Exact calculation of corrosion rates by the weight-loss method. Experimental Results, 3, e13. https://doi.org/10.1017/exp.2022.5
Peng, S., Zhang, Z., Liu, E., Liu, W., & Qiao, W. (2021). A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline. Journal of Natural Gas Science and Engineering, 85, 103716. https://doi.org/10.1016/j.jngse.2020.103716
Punia Bangar, S., Kumar, M., & Whiteside, W. S. (2021). Mango seed starch: A sustainable and eco-friendly alternative to increasing industrial requirements. International Journal of Biological Macromolecules, 183, 1807–1817. https://doi.org/10.1016/j.ijbiomac.2021.05.157
Ramezanzadeh, M., Bahlakeh, G., Sanaei, Z., & Ramezanzadeh, B. (2019). Corrosion inhibition of mild steel in 1?M HCl solution by ethanolic extract of eco-friendly Mangifera indica (mango) leaves: Electrochemical, molecular dynamics, Monte Carlo and ab initio study. Applied Surface Science, 463, 1058–1077. https://doi.org/10.1016/j.apsusc.2018.09.029
Rojas, R., Contreras-Esquivel, J. C., Orozco-Esquivel, M. T., Muñoz, C., Aguirre-Joya, J. A., & Aguilar, C. N. (2015). Mango Peel as Source of Antioxidants and Pectin: Microwave Assisted Extraction. Waste and Biomass Valorization, 6(6), 1095–1102. https://doi.org/10.1007/s12649-015-9401-4
Salim. (2020). Corrosion inhibition of thiadiazole derivative for mild steel in hydrochloric acid solution. International Journal of Corrosion and Scale Inhibition. https://doi.org/10.17675/2305-6894-2020-9-2-10
Salleh, S. Z., Yusoff, A. H., Zakaria, S. K., Taib, M. A. A., Abu Seman, A., Masri, M. N., Mohamad, M., Mamat, S., Ahmad Sobri, S., Ali, A., & Teo, P. Ter. (2021). Plant extracts as green corrosion inhibitor for ferrous metal alloys: A review. Journal of Cleaner Production, 304, 127030. https://doi.org/10.1016/j.jclepro.2021.127030
Septianissa, S., Prawara, B., Basuki, E. A., Martides, E., & Riyanto, E. (2022). Improving the hot corrosion resistance of ?/?’ in Fe-Ni superalloy coated with Cr3C2-20NiCr and NiCrAlY using HVOF thermal spray coating. International Journal of Electrochemical Science, 17(12), 221231. https://doi.org/10.20964/2022.12.27
Septianissa, S., Widantha, K. W., & Waldi, M. (2024). INVESTIGATION OF TEMPERATURES AND HOLDING TIMES ON HIGH-STRENGTH LOW-ALLOY STEEL FOR TANK TRACK LINKS. LOGIC?: Jurnal Rancang Bangun Dan Teknologi, 24(2), 87–92. https://doi.org/10.31940/logic.v24i2.87-92
Shin, D.-H., Hwang, H.-K., Kim, H.-H., & Lee, J.-H. (2022). Evaluation of Commercial Corrosion Sensors for Real-Time Monitoring of Pipe Wall Thickness under Various Operational Conditions. Sensors, 22(19), 7562. https://doi.org/10.3390/s22197562
Shokri, A., & Sanavi Fard, M. (2023). Under deposit corrosion failure: mitigation strategies and future roadmap. Chemical Papers, 77(4), 1773–1790. https://doi.org/10.1007/s11696-022-02601-6
Sudiarti, T., Supriadin, A., Sarifufah, D., & Kusman, C. (2020). The Effect of Concentration And Temperature on The Activities of Polar and Semi Polar Mango Peel Extract as Iron Corrosion Inhibitors In Solution of NaCl 1%. Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH 2019, 11-12 July 2019, Bandung, Indonesia. https://doi.org/10.4108/eai.11-7-2019.2298046
Titah, H. S., & Pratikno, H. (2023). Salinity reduction using capacitive deionization (CDI) reactor in batch system. 030040. https://doi.org/10.1063/5.0125527
Verma, C., Al-Moubaraki, A. H., Alfantazi, A., & Rhee, K. Y. (2024). Heterocyclic amino acids-based green and sustainable corrosion inhibitors: Adsorption, bonding and corrosion control. Journal of Cleaner Production, 446, 141186. https://doi.org/10.1016/j.jclepro.2024.141186
Verma, P., Zhou, Y., Cao, Z., Deraska, P. V., Deb, M., Arai, E., Li, W., Shao, Y., Puentes, L., Li, Y., Patankar, S., Mach, R. H., Faryabi, R. B., Shi, J., & Greenberg, R. A. (2021). ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nature Cell Biology, 23(2), 160–171. https://doi.org/10.1038/s41556-020-00624-3
Wongkaew, M., Chaimongkol, P., Leksawasdi, N., Jantanasakulwong, K., Rachtanapun, P., Seesuriyachan, P., Phimolsiripol, Y., Chaiyaso, T., Ruksiriwanich, W., Jantrawut, P., & Sommano, S. R. (2021). Mango Peel Pectin: Recovery, Functionality and Sustainable Uses. Polymers, 13(22), 3898. https://doi.org/10.3390/polym13223898
Xuan Bach, L., Dao, T.-B.-N., Duong-Ngo, K.-L., Tran, T. N., Le Minh, T., Nguyen Trong, H., Hoang Ngoc, C. T., Panaitescu, C., To Hoai, N., & Dang, N. N. (2023). Inhibitive behaviours of unripe banana peel extract for mitigating electrochemical corrosion of carbon steel in aggressively acidic solutions. Journal of Taibah University for Science, 17(1). https://doi.org/10.1080/16583655.2023.2247633
Yang, J., Lu, Y., Guo, Z., Gu, J., & Gu, C. (2018). Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution. Corrosion Science, 130, 64–75. https://doi.org/10.1016/j.corsci.2017.10.027
Zakeri, A., Bahmani, E., & Aghdam, A. S. R. (2022). Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review. Corrosion Communications, 5, 25–38. https://doi.org/10.1016/j.corcom.2022.03.002
Zehra, S., Mobin, M., & Aslam, R. (2022). Corrosion inhibitors: an introduction. In Environmentally Sustainable Corrosion Inhibitors (pp. 47–67). Elsevier. https://doi.org/10.1016/B978-0-323-85405-4.00022-7
Zhang, L., Pan, Y., Xu, K., Bi, L., Chen, M., & Han, B. (2022). Corrosion behavior of concrete fabricated with lithium slag as corrosion inhibitor under simulated acid rain corrosion action. Journal of Cleaner Production, 377, 134300. https://doi.org/10.1016/j.jclepro.2022.134300