Performance of Corrosion Behavior of Commercial Magnesium Alloy Anode Electrode in Seawater-Powered Lamps

Authors

  • Rezza Ruzuqi Marine and Fisheries Polytechnic Sorong
  • Eko Tavip Maryanto Sorong Muhammadiyah University of Education
  • Muhamad Ali Ulat Marine and Fisheries Polytechnic Kupang
  • Dwi Rosalina Marine and Fisheries Polytechnic Bone
  • Ar Hanung Triyono Sebelas Maret University
  • Siswanto Siswanto Airlangga University

DOI:

https://doi.org/10.37385/jaets.v6i1.5340

Keywords:

Magnesium Alloy Anode, Seawater Batteries, Corrosion Behavior, Salinity Variation, Potentiodynamic Testing

Abstract

The development of environmentally friendly alternative technologies, such as seawater batteries, is increasingly important in addressing energy needs. This study aims to analyze the corrosion behavior of a magnesium alloy anode electrode used in seawater batteries with varying salinity levels. Five commercial anode electrode samples were prepared, each immersed in a salt solution with different concentrations: 14g, 16g, 18g, 20g, and 22g in 380 ml of distilled water. Potentiodynamic testing was conducted to measure the corrosion potential (Ecorr), corrosion current (Icorr), and corrosion rate. The results showed that an increase in salt concentration significantly increased the corrosion rate. The sample with the highest salt concentration (22g) produced a corrosion potential of 1.5419 Volts, a corrosion current of 0.0010 Amps/cm², and a corrosion rate of 12.5850 mm/year. These findings indicate that the corrosion rate increases with higher salinity. The study concludes that there is a positive correlation between salinity and corrosion rate, with future research expected to focus on additional treatments to improve electrode performance.

Downloads

Download data is not yet available.

References

AbdelHamid, A. A., Mendoza-Garcia, A., & Ying, J. Y. (2022). Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries. Nano Energy, 93, 106860. https://doi.org/10.1016/j.nanoen.2021.106860

Abedini, A., Shamskhani, R., Ebrahimi Valmoozi, A. A., & Seyyed Afghahi, S. S. (2023). Effect of aging on corrosion and discharge performance of AZ63-1.5RE alloy as anode in magnesium-dissolved oxygen seawater batteries. Journal of Power Sources, 581, 233405. https://doi.org/10.1016/j.jpowsour.2023.233405

Abedini, A., Valmoozi, A. A. E., Seyyed Afghahi, S. S., Shamskhani, R., Karkeabadi, R., Saeed far, M., Shammakhi, H., & Rajabi, M. (2023). Corrosion and discharge performance of AZ61, AZ63, AZ101 and AZ103 alloys as anode in magnesium-dissolved oxygen seawater long term batteries. Journal of Power Sources, 570, 233004. https://doi.org/10.1016/j.jpowsour.2023.233004

Ahmed, I., Rehan, M., Basit, A., & Hong, K.-S. (2022). Greenhouse gases emission reduction for electric power generation sector by efficient dispatching of thermal plants integrated with renewable systems. Scientific Reports, 12(1), 12380. https://doi.org/10.1038/s41598-022-15983-0

Chen, J., Xu, W., Wang, X., Yang, S., & Xiong, C. (2023). Progress and Applications of Seawater-Activated Batteries. Sustainability, 15(2), 1635. https://doi.org/10.3390/su15021635

Deng, M., Wang, L., Vaghefinazari, B., Xu, W., Feiler, C., Lamaka, S. V., Höche, D., Zheludkevich, M. L., & Snihirova, D. (2021). High-energy and durable aqueous magnesium batteries: Recent advances and perspectives. Energy Storage Materials, 43, 238–247. https://doi.org/10.1016/j.ensm.2021.09.008

Ding, S., Yu, X., Ma, Z.-F., & Yuan, X. (2021). A review of rechargeable aprotic lithium–oxygen batteries based on theoretical and computational investigations. Journal of Materials Chemistry A, 9(13), 8160–8194. https://doi.org/10.1039/D1TA00646K

Gao, L.-M., Cao, J., Qiu, J.-Y., Chen, L.-J., Yang, J.-J., Li, H.-Z., Liao, B.-K., & Guo, X.-P. (2024). Adsorption and desorption behaviors of sodium dodecyl sulfate on the self-corrosion and discharge performances of AZ31B as anode for Mg seawater battery. Journal of Power Sources, 617, 235115. https://doi.org/10.1016/j.jpowsour.2024.235115

Ghigo, A., Faraggiana, E., Giorgi, G., Mattiazzo, G., & Bracco, G. (2024). Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review. Renewable and Sustainable Energy Reviews, 193, 114302. https://doi.org/10.1016/j.rser.2024.114302

Hou, L., Dang, N., Yang, H., Liu, B., Li, Y., Wei, Y., & Chen, X.-B. (2016). A Combined Inhibiting Effect of Sodium Alginate and Sodium Phosphate on the Corrosion of Magnesium Alloy AZ31 in NaCl Solution. Journal of The Electrochemical Society, 163(8), C486–C494. https://doi.org/10.1149/2.0941608jes

Karudesh, E., Aneesh, J., Francis, A. L., & Radha, R. (2024). Exploring the inhibition effect of tri-sodium phosphate concentrations on corrosion in Mg-sn-ca-mn anode for magnesium batteries. Materials Technology, 39(1), 2357513. https://doi.org/10.1080/10667857.2024.2357513

Khaleel, O. J., Basim Ismail, F., Khalil Ibrahim, T., & Bin Abu Hassan, S. H. (2022). Energy and exergy analysis of the steam power plants: A comprehensive review on the Classification, Development, Improvements, and configurations. Ain Shams Engineering Journal, 13(3), 101640. https://doi.org/10.1016/j.asej.2021.11.009

Kindle, M., Cha, Y., McCloy, J. S., & Song, M.-K. (2021). Alternatives to Cobalt: Vanadate Glass and Glass-Ceramic Structures as Cathode Materials for Rechargeable Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 9(2), 629–638. https://doi.org/10.1021/acssuschemeng.0c04026

Koo, S., Jeong, S., Seo, J., Song, Y., Kwon, O., Kim, Y. C., & Baek, S. (2020). Sea-water Battery for Maritime Applications. Global Oceans 2020: Singapore – U.S. Gulf Coast, 1–4. https://doi.org/10.1109/IEEECONF38699.2020.9389130

Lee, B.-S. (2020). A Review of Recent Advancements in Electrospun Anode Materials to Improve Rechargeable Lithium Battery Performance. Polymers, 12(9), 2035. https://doi.org/10.3390/polym12092035

Li, Q., Xiong, W., Yu, M., Li, J., Liu, L., Zhu, G., Wang, L., Wang, J., Yu, S., & Liu, E. (2022). Effect of Ce content on performance of AZ31 magnesium alloy anode in air battery. Journal of Alloys and Compounds, 891, 161914. https://doi.org/10.1016/j.jallcom.2021.161914

Li, Y., Ma, J., Wang, G., Ren, F., Zhu, Y., & Song, Y. (2018). Investigation of Sodium Phosphate and Sodium Dodecylbenzenesulfonate as Electrolyte Additives for AZ91 Magnesium-Air Battery. Journal of The Electrochemical Society, 165(9), A1713–A1717. https://doi.org/10.1149/2.0581809jes

Liu, F., Liu, Y., Zhao, X., Liu, K., Yin, H., & Fan, L. (2020). Prelithiated V 2 C MXene: A High?Performance Electrode for Hybrid Magnesium/Lithium?Ion Batteries by Ion Cointercalation. Small, 16(8), 1906076. https://doi.org/10.1002/smll.201906076

Liu, P., Zhu, B., & Yang, M. (2021). Has marine technology innovation promoted the high-quality development of the marine economy? ——Evidence from coastal regions in China. Ocean & Coastal Management, 209, 105695. https://doi.org/10.1016/j.ocecoaman.2021.105695

Liu, X., Xue, J., Zhang, P., & Wang, Z. (2019). Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries. Journal of Power Sources, 414, 174–182. https://doi.org/10.1016/j.jpowsour.2018.12.092

Lu, X., Hu, J., Zhao, Y., Wang, M., Wang, X., Ye, Z., Zheng, Z., Hu, J., & Feng, X. (2021). Corrosion Behavior of Stannate Conversion Coatings on AZ31B Alloys and Their Initial Discharge Performance as Anodes for Seawater Batteries. Journal of The Electrochemical Society, 168(8), 080513. https://doi.org/10.1149/1945-7111/ac1a56

Ma, J., Zhang, Y., Ma, M., Qin, C., Ren, F., & Wang, G. (2020). Corrosion and discharge performance of a magnesium aluminum eutectic alloy as anode for magnesium–air batteries. Corrosion Science, 170, 108695. https://doi.org/10.1016/j.corsci.2020.108695

Nasri, E., Jarou, T., Benchikh, S., & Elkoudia, Y. (2023). Reliable energy supply and voltage control for hybrid microgrid by pid controlled with integrating of an EV charging station. Diagnostyka, 24(4), 1–11. https://doi.org/10.29354/diag/174145

Ong, A. K. S., Prasetyo, Y. T., Salazar, J. M. L. D., Erfe, J. J. C., Abella, A. A., Young, M. N., Chuenyindee, T., Nadlifatin, R., & Ngurah Perwira Redi, A. A. (2022). Investigating the acceptance of the reopening Bataan nuclear power plant: Integrating protection motivation theory and extended theory of planned behavior. Nuclear Engineering and Technology, 54(3), 1115–1125. https://doi.org/10.1016/j.net.2021.08.032

Rahman, A., Farrok, O., & Haque, M. M. (2022). Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161, 112279. https://doi.org/10.1016/j.rser.2022.112279

Shrestha, N., Raja, K. S., & Utgikar, V. (2019). Mg-RE Alloy Anode Materials for Mg-Air Battery Application. Journal of The Electrochemical Society, 166(14), A3139–A3153. https://doi.org/10.1149/2.0131914jes

Supriyono, Oktavian, R., Wulaningfitri, L. P. M. I., Pradana, J. C., & Feliana, I. (2018). Influence of anodizing concentration and electric potential on surface morphology and corrosion behavior of anodized magnesium in seawater activated battery. IOP Conference Series: Earth and Environmental Science, 105, 012054. https://doi.org/10.1088/1755-1315/105/1/012054

Tong, F., Chen, X., Wei, S., Malmström, J., Vella, J., & Gao, W. (2021). Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery. Journal of Magnesium and Alloys, 9(6), 1967–1976. https://doi.org/10.1016/j.jma.2021.08.022

Wang, C., Mei, D., Wiese, G., Wang, L., Deng, M., Lamaka, S. V., & Zheludkevich, M. L. (2020). High rate oxygen reduction reaction during corrosion of ultra-high-purity magnesium. Npj Materials Degradation, 4(1), 42. https://doi.org/10.1038/s41529-020-00146-1

Wang, N., Huang, Y., Liu, J., Yang, X., Xie, W., Cai, Q., Zheng, S., & Shi, Z. (2021). AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery. Electrochimica Acta, 378, 138135. https://doi.org/10.1016/j.electacta.2021.138135

Wang, R., Li, Q., Wang, N., Peng, C., & Feng, Y. (2018). Effect of Lithium on the Discharge and Corrosion Behavior of Mg-3 wt.% Al Alloy as the Anode for Seawater Activated Battery. Journal of Materials Engineering and Performance, 27(12), 6552–6563. https://doi.org/10.1007/s11665-018-3750-7

Wang, Z., Feng, G., Zhen, D., Gu, F., & Ball, A. (2021). A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles. Energy Reports, 7, 5141–5161. https://doi.org/10.1016/j.egyr.2021.08.113

Wilson, B. J. (1968). CHARACTERISTICS OF AN IMPROVED INERT-CATHODE/MAGNESIUM-ANODE SEA-WATER BATTERY.

Wu, F., Maier, J., & Yu, Y. (2020). Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 49(5), 1569–1614. https://doi.org/10.1039/C7CS00863E

Xu, J., Cai, X., Cai, S., Shao, Y., Hu, C., Lu, S., & Ding, S. (2023). HIGH?ENERGY Lithium?Ion Batteries: Recent Progress and a Promising Future in Applications. ENERGY & ENVIRONMENTAL MATERIALS, 6(5), e12450. https://doi.org/10.1002/eem2.12450

Y?ld?r?m, B. (2021). The effect of hydroelectric power plants on the carbon emission: An example of Gokcekaya dam, Turkey. Renewable Energy, 170, 181-187. https://doi.org/10.1016/j.renene.2021.01.130

Yu, J., Li, B.-Q., Zhao, C.-X., & Zhang, Q. (2020). Seawater electrolyte-based metal–air batteries: From strategies to applications. Energy & Environmental Science, 13. https://doi.org/10.1039/D0EE01617A

Yu, J., Lv, Y., Duan, T., Meng, F., Cheng, Q., Xu, Y., Zhou, K., Xue, L., & Leng, Z. (2020). Discharge and Corrosion Behaviors of Mg-Li and Mg-Li-La Alloys as Anodes for Seawater Battery. International Journal of Electrochemical Science, 15(11), 10922–10935. https://doi.org/10.20964/2020.11.02

Zhang, D., Li, D., Zhang, J., & Sun, T. (2021). High-performance and low-cost manganese oxide/multiwalled carbon nanotubes composite as cathode material for aqueous magnesium ion battery. Journal of Electroanalytical Chemistry, 901, 115764. https://doi.org/10.1016/j.jelechem.2021.115764

Zhang, Y., Cao, J.-M., Yuan, Z., Xu, H., Li, D., Li, Y., Han, W., & Wang, L. (2022). TiVCT MXene/Chalcogenide Heterostructure-Based High-Performance Magnesium-Ion Battery as Flexible Integrated Units. Small, 18(30), 2202313. https://doi.org/10.1002/smll.202202313

Zhang, Y., Liu, G., Zhang, C., Chi, Q., Zhang, T., Feng, Y., Zhu, K., Zhang, Y., Chen, Q., & Cao, D. (2020). Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries. Chemical Engineering Journal, 392, 123652. https://doi.org/10.1016/j.cej.2019.123652

Zheng, T., Hu, Y., Zhang, Y., Yang, S., & Pan, F. (2018). Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Materials & Design, 137, 245–255. https://doi.org/10.1016/j.matdes.2017.10.031

Downloads

Published

2024-12-15

How to Cite

Ruzuqi, R., Tavip Maryanto, E. ., Ali Ulat, M. ., Rosalina, D. ., Triyono, A. H. ., & Siswanto, S. (2024). Performance of Corrosion Behavior of Commercial Magnesium Alloy Anode Electrode in Seawater-Powered Lamps. Journal of Applied Engineering and Technological Science (JAETS), 6(1), 341–354. https://doi.org/10.37385/jaets.v6i1.5340