Breakthrough in Brain Tumor Diagnosis: A Cutting-Edge Hybrid Depthwise-Direct Acyclic Graph Network for MRI Image Classification
DOI:
https://doi.org/10.37385/jaets.v6i1.5938Keywords:
Brain tumor, Detection, Depthwise-Direct Acyclic Graph Network, Deep learning, Computer-Aided DiagnosisAbstract
Both adults and children are at risk of dying from brain tumors. On the other hand, prompt and precise detection can save lives. Early detection is necessary for a proper diagnosis of a brain tumor, and magnetic resonance imaging (MRI) is often used in this context. To assist in the early diagnosis of sickness, neuro-oncologists have used Computer-Aided Diagnosis (CAD) in a number of ways. In this study, proposed a hybrid Depthwise-Direct Acyclic Graph Network (D-DAGNET)-based deep learning was developed to distinguish between cancers and non-tumors. Three processes make up this method: pre-processing, classification, and feature extraction. Pre-processing methods used in this study included contrast enhancement and image shrinking. The MRI picture is processed to get the wavelet and texture properties and used to build a classifier. Using MRI scans, the proposed hybrid Depthwise-Direct Acyclic Graph Network (D-DAGNET) model classifies two types of brain tumors: tumor and non-tumor. Performance criteria such as accuracy (ACC), specificity (SP), and sensitivity (SE) are used to assess the suggested hybrid Depthwise-Direct Acyclic Graph Network (D-DAGNET) model. Based on 850 images, the studies yielded a 99.54% categorization accuracy demonstrate that the suggested hybrid Depthwise-Direct Acyclic Graph Network (D-DAGNET) model beats the most advanced methods.
Downloads
References
Abdusalomov, A. B., Mukhiddinov, M., &Whangbo, T. K. (2023). Brain tumor detection based on deep learning approaches and magnetic resonance imaging. Cancers, 15(16), 4172. https://doi.org/10.3390/cancers15164172
Anaraki, A. K., Ayati, M., & Kazemi, F. (2019). Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. biocybernetics and biomedical engineering, 39(1), 63-74. https://doi.org/10.1016/j.bbe.2018.10.004
Amin, J., Sharif, M., Gul, N., Raza, M., Anjum, M. A., Nisar, M. W., & Bukhari, S. A. C. (2020). Brain tumor detection by using stacked autoencoders in deep learning. Journal of medical systems, 44, 1-12. https://doi.org/10.1007/s10916-019-1483-2
Amin, J., Sharif, M., Yasmin, M., & Fernandes, S. L. (2020). A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters, 139, 118-127. https://doi.org/10.1016/j.patrec.2017.10.036
Arbane, M., Benlamri, R., Brik, Y., &Djerioui, M. (2021, February). Transfer learning for automatic brain tumor classification using MRI images. In 2020 2nd international workshop on human-centric smart environments for health and well-being (IHSH) (pp. 210-214). IEEE. https://doi.org/10.1109/IHSH51661.2021.9378739
Asiri, A. A., Soomro, T. A., Shah, A. A., Pogrebna, G., Irfan, M., & Alqahtani, S. (2024). Optimized Brain Tumor Detection: A Dual-Module Approach for MRI Image Enhancement and Tumor Classification. IEEE Access, 12, 42868-42887. https://doi.org/10.1109/ACCESS.2024.3379136
Brindha, P. G., Kavinraj, M., Manivasakam, P., & Prasanth, P. (2021, February). Brain tumor detection from MRI images using deep learning techniques. In IOP conference series: materials science and engineering (Vol. 1055, No. 1, p. 012115). IOP Publishing. https://doi.org/10.1088/1757-899X/1055/1/012115
Choudhury, C. L., Mahanty, C., Kumar, R., & Mishra, B. K. (2020, March). Brain tumor detection and classification using convolutional neural network and deep neural network. In 2020 international conference on computer science, engineering and applications (ICCSEA) (pp. 1-4). IEEE. https://doi.org/10.1109/ICCSEA49143.2020.9132874
Dipu, N. M., Shohan, S. A., & Salam, K. M. A. (2021, June). Deep learning based brain tumor detection and classification. In 2021 International conference on intelligent technologies (CONIT) (pp. 1-6). IEEE. https://doi.org/10.1109/CONIT51480.2021.9498384
Ghassemi, N., Shoeibi, A., & Rouhani, M. (2020). Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomedical Signal Processing and Control, 57, 101678. https://doi.org/10.1016/j.bspc.2019.101678
Gull, S., & Akbar, S. (2021). Artificial intelligence in brain tumor detection through MRI scans: advancements and challenges. Artificial Intelligence and Internet of Things, 241-276.
Gumaei, A., Hassan, M. M., Hassan, M. R., Alelaiwi, A., & Fortino, G. (2019). A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access, 7, 36266-36273. https://doi.org/10.1109/ACCESS.2019.2904145
Hemanth, G., Janardhan, M., & Sujihelen, L. (2019, April). Design and implementing brain tumor detection using machine learning approach. In 2019 3rd international conference on trends in electronics and informatics (ICOEI) (pp. 1289-1294). IEEE. https://doi.org/10.1109/ICOEI.2019.8862553
Jabbar, A., Naseem, S., Mahmood, T., Saba, T., Alamri, F. S., & Rehman, A. (2023). Brain tumor detection and multi-grade segmentation through hybrid caps-VGGNet model. IEEE Access, 11, 72518-72536. https://doi.org/10.1109/ACCESS.2023.3289224
Jia, Z., & Chen, D. (2020). Brain tumor identification and classification of MRI images using deep learning techniques. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3016319
Khan, M. A., Khan, A., Alhaisoni, M., Alqahtani, A., Alsubai, S., Alharbi, M., ... &Damaševi?ius, R. (2023). Multimodal brain tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. International Journal of Imaging Systems and Technology, 33(2), 572-587. https://doi.org/10.1002/ima.22831
Khan, M. S. I., Rahman, A., Debnath, T., Karim, M. R., Nasir, M. K., Band, S. S., ... &Dehzangi, I. (2022). Accurate brain tumor detection using deep convolutional neural network. Computational and Structural Biotechnology Journal, 20, 4733-4745. https://doi.org/10.1016/j.csbj.2022.08.039
Majib, M. S., Rahman, M. M., Sazzad, T. S., Khan, N. I., & Dey, S. K. (2021). Vgg-scnet: A vgg net-based deep learning framework for brain tumor detection on mri images. IEEE Access, 9, 116942-116952. https://doi.org/10.1109/ACCESS.2021.3105874
Maqsood, S., Damaševi?ius, R., &Maskeli?nas, R. (2022). Multi-modal brain tumor detection using deep neural network and multiclass SVM. Medicina, 58(8), 1090. https://doi.org/10.3390/medicina58081090
Methil, A. S. (2021, March). Brain tumor detection using deep learning and image processing. In 2021 international conference on artificial intelligence and smart systems (ICAIS) (pp. 100-108). IEEE. https://doi.org/10.1109/ICAIS50930.2021.9395823
Modiya, P., & Vahora, S. (2022). Brain tumor detection using transfer learning with dimensionality reduction method. International Journal of Intelligent Systems and Applications in Engineering, 10(2), 201-206.
Muis, A., Sunardi, S., & Yudhana, A. (2024). Cnn-based approach for enhancing brain tumor image classification accuracy. International Journal of Engineering, 37(5), 984-996. https://doi.org/10.5829/ije.2024.37.05b.15
Nassar, S. E., Yasser, I., Amer, H. M., & Mohamed, M. A. (2024). A robust MRI-based brain tumor classification via a hybrid deep learning technique. The Journal of Supercomputing, 80(2), 2403-2427. https://doi.org/10.1007/s11227-023-05549-w
Rahman, T., & Islam, M. S. (2023). MRI brain tumor detection and classification using parallel deep convolutional neural networks. Measurement: Sensors, 26, 100694. https://doi.org/10.1016/j.measen.2023.100694
Rajinikanth, V., Joseph Raj, A. N., Thanaraj, K. P., & Naik, G. R. (2020). A customized VGG19 network with concatenation of deep and handcrafted features for brain tumor detection. Applied Sciences, 10(10), 3429. https://doi.org/10.3390/app10103429
Ramanagiri, A., Mukunthan, M., & Balamurugan, G. (2024, April). Enhanced Brain Tumor Detection Using Resnet-50. In 2024 10th International Conference on Communication and Signal Processing (ICCSP) (pp. 1708-1711). IEEE. https://doi.org/10.1109/ICCSP60870.2024.10543742
Rizwan, M., Shabbir, A., Javed, A. R., Shabbir, M., Baker, T., & Obe, D. A. J. (2022). Brain tumor and glioma grade classification using Gaussian convolutional neural network. IEEE Access, 10, 29731-29740. https://doi.org/10.1109/ACCESS.2022.3153108
Sadad, T., Rehman, A., Munir, A., Saba, T., Tariq, U., Ayesha, N., & Abbasi, R. (2021). Brain tumor detection and multi?classification using advanced deep learning techniques. Microscopy research and technique, 84(6), 1296-1308. https://doi.org/10.1002/jemt.23688
Saxena, P., Maheshwari, A., & Maheshwari, S. (2020). Predictive modeling of brain tumor: a deep learning approach. In Innovations in Computational Intelligence and Computer Vision: Proceedings of ICICV 2020 (pp. 275-285). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-6067-5_30
Shah, H. A., Saeed, F., Yun, S., Park, J. H., Paul, A., & Kang, J. M. (2022). A robust approach for brain tumor detection in magnetic resonance images using finetuned efficientnet. Ieee Access, 10, 65426-65438. https://doi.org/10.1109/ACCESS.2022.3184113
Suryawanshi, S., & Patil, S. B. (2024). Efficient brain tumor classification with a hybrid CNN-SVM approach in MRI. Journal of Advances in Information Technology, 15(3). https://doi.org/10.12720/jait.15.3.340-354
Solanki, S., Singh, U. P., Chouhan, S. S., & Jain, S. (2023). Brain tumor detection and classification using intelligence techniques: an overview. IEEE Access, 11, 12870-12886. https://doi.org/10.1109/ACCESS.2023.3242666
Tazeen, T., Sarvagya, M., & Sarvagya, M. (2021). Brain tumor segmentation and classification using multiple feature extraction and convolutional neural networks. International Journal of Engineering and Advanced Technology, 10(6), 23-27. 0621 https://doi.org/10.35940/ijeat.F2948.0810621
Tiwari, P., Pant, B., Elarabawy, M. M., Abd-Elnaby, M., Mohd, N., Dhiman, G., & Sharma, S. (2022). Cnn based multiclass brain tumor detection using medical imaging. Computational Intelligence and Neuroscience, 2022(1), 1830010. https://doi.org/10.1155/2022/1830010
To?açar, M., Ergen, B., & Cömert, Z. (2020). BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model. Medical hypotheses, 134, 109531. https://doi.org/10.1016/j.mehy.2019.109531
Ullah, N., Hassan, M., Khan, J. A., Anwar, M. S., & Aurangzeb, K. (2024). Enhancing explainability in brain tumor detection: A novel DeepEBTDNet model with LIME on MRI images. International Journal of Imaging Systems and Technology, 34(1), e23012. https://doi.org/10.1002/ima.23012
Sultan, H. H., Salem, N. M., & Al-Atabany, W. (2019). Multi-classification of brain tumor images using deep neural network. IEEE access, 7, 69215-69225. https://doi.org/10.1109/ACCESS.2019.2919122
Xu, M., Guo, L., & Wu, H. C. (2024). Novel Robust Automatic Brain-Tumor Detection and Segmentation Using Magnetic Resonance Imaging. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2024.3367123
Zaw, H. T., Maneerat, N., & Win, K. Y. (2019, July). Brain tumor detection based on Naïve Bayes Classification. In 2019 5th International Conference on engineering, applied sciences and technology (ICEAST) (pp. 1-4). IEEE. https://doi.org/10.1109/ICEAST.2019.8802562
Zhou, L., Wang, M., & Zhou, N. (2024). Distributed federated learning-based deep learning model for privacy mri brain tumor detection. arXiv preprint arXiv:2404.10026. https://doi.org/10.48550/arXiv.2404.10026