Air-Gap Reduction and Antenna Positioning of an X-Band Bow Tie Slot Antenna on 2U CubeSats
DOI:
https://doi.org/10.37385/jaets.v6i1.6158Keywords:
2U CubeSats, Bow Tie antennas, CubeSat Lifetime, HPBW, Peak gainAbstract
In this research work, a small size and wide-band Bow Tie slot antenna (BTSA) is proposed and optimized for use on an unlimited lifetime small-sized CubeSats at X-band. Interestingly, this paper introduces a graceful mechanism of integrating Bow Tie slot antennas on the bodies of small CubeSat configurations, which minimizes the antenna throwing from the satellite body and the whole CubeSat volume. The proposed approaches propose and analyze in detail how a small metallic part of a 2U CubeSat body improves the antenna performances around an operating frequency of 8.4 GHz. It maximizes the antenna gain simultaneously with the beamwidth angles at 8.4 GHz by suppressing the resulting back-lobes, which are re-directed outside the CubeSat box. These impacts are achieved by shifting a very small air-gap distance of only 1 mm between the back face of the BTSA dielectric and the CubeSat top face. The developed BTSA is lightweight and exhibits a unidirectional radiation pattern with a wide beamwidth angle of about 160° and a high gain of about 11.0 dBi at 8.4 GHz. The overall results with occupied size and volume are satisfactory for unlimited lifetime CubeSat missions at X-band such as UM5-Ribat and UM5-EOSAT of University Mohammed V in Rabat.
Downloads
References
Abels, J. (2024). Private infrastructure in geopolitical conflicts: the case of Starlink and the war in Ukraine. European Journal of International Relations. https://doi.org/10.1177/13540661241260653.
Ali, T., Fatima, N., & Biradar, R. C. (2018). A miniaturized multiband reconfigurable fractal slot antenna for GPS/GNSS/Bluetooth/WiMAX/X-band applications. AEU - International Journal of Electronics and Communications, 94, 234-243. https://doi.org/10.1016/j.aeue.2018.07.017.
Anand, R., & Chawla, P., (2020). A novel dual-wideband inscribed hexagonal fractal slotted microstrip antenna for C- and X-band applications. Inter. Journal RF Microwave Computer Aided Eng., 30(9), e22277. https://doi.org/10.1002/mmce.22277.
Bag, B., Biswas, P., De, S., Biswas, S., & Sarkar, P.P., (2020). A Wide Multi-band Monopole Antenna for GSM/WiMAX/WLAN/X-Band/Ku-Band Applications. Wireless Pers. Commun., 111, 411–427. https://doi.org/10.1007/s11277-019-06866-1.
Bhattacharya, A., Dasgupta, B., & Jyoti, R. (2021). Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna. Inter. Journal RF Microw Comput Aided Eng., 31(2), e22505. https://doi.org/10.1002/mmce.22505.
Bhongale, S.R. (2019). Mg-Nd-Cd Ferrite as Substrate for X-Band Microstrip Patch Antenna. Journal of Magnetism and Magnetic Materials, 499, 165918. https://doi.org/10.1016/j.jmmm.2019.165918.
Campioli, S., Stesina, F., La Bella, E., Corpino, S., Niero, L. & My, C. (2024). Concurrent Engineering to Enhance Autonomy for Deep-Space CubeSat Mission Design. IFAC-PapersOnLine, 58(16), 163-168. https://doi.org/10.1016/j.ifacol.2024.08.480.
Chaimool, S., Hongnara, T., Rakluea, C., Akkaraekthalin, P., & Zhao, Y. (2019). Design of a PIN Diode-Based Reconfigurable Metasurface Antenna for Beam Switching Applications. International Journal of Antennas and Propagation, 2019, 72163224, 1-7. https://doi.org/10.1155/2019/7216324.
Chen, S. L., & Shie, M. H. (2019). A Compact High Gain X-Band Patch Antenna for Cube and Small Satellite Applications. Proceeding of the IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1561-1562. https://doi.org/10.1109/apusncursinrsm.2019.8888759.
Chu, C., Wang, M., Wang, J., Guo, Y., & Wu, W. (2023). A New Design of Filtering Patch Antennas With Enhanced Bandwidth and Harmonic Suppression. In IEEE Transactions on Antennas and Propagation, 71(7), 6120-6125. 10.1109/TAP.2023.3266059.
Cratere, A., Gagliardi, L., Sanca, G.A., Golmar, F., & Dell’Olio, F. (2024). On-Board Computer for CubeSats: State-of-the-Art and Future Trends. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3428388.
El Bakkali, M. (2020). Planar Antennas with Parasitic Elements and Metasurface Superstrate Structure for 3U CubeSats, PhD. Thesis, Sidi Mohamed Ben Abdellah University, city of Fez, Morocco.
El Bakkali, M., Bekkali, M. E., Gaba, G. S., Guerrero, J. M., Kansal, L., & Masud, M. (2021). Fully Integrated High Gain S-Band Triangular Slot Antenna for CubeSat Communications. electronics, 10(2), 156. https://doi.org/10.3390/electronics10020156.
Eslami, A., Nourinia, J., Ghobadi, C., & Shokri, M. (2021). Four-element MIMO antenna for X-band applications. International Journal of Microwave and Wireless Technologies, 13(8), 859–866. https://doi.org/10.1017/s1759078720001440.
Francisco, C., Henriques, R., & Barbosa, S. (2023). A Review on CubeSat Missions for Ionospheric Science. Aerospace, 10(7), 622. https://doi.org/10.3390/aerospace10070622.
Giannetti, G. (2023). Improved and easy-to-implement HFSS-MATLAB interface without VBA scripts: an insightful application to the numerical design of patch antennas. Applied Computational Electromagnetics Society Journal, 38, 377-381. https://hdl.handle.net/2158/1354802.
Gupta, N., Saxena, J., Bhatia, K. S., & Dadwal, N. (2018). Design of Metamaterial-Loaded Rectangular Patch Antenna for Satellite Communication Applications. Iranian Journal of Science and Technology, Trans. of Electr. Eng., 43, 39-49. https://doi.org/10.1007/s40998-018-0118-9.
Han, Y., Gong, S., Wang, J., Li, Y., Qu, S., & Zhang, J. (2020). Reducing RCS of Patch Antennas via Dispersion Engineering of Metamaterial Absorbers. IEEE Transactions on Antennas and Propagation, 68(3), 1419-1425. https://doi.org/10.1109/tap.2019.2925275.
Huang, X., Chen, P., & Xia, X. (2024). Heterogeneous optical network and power allocation scheme for inter-CubeSat communication. Optics Letters, 49(5), 1213-1216. https://doi.org/10.1364/OL.514198.
Jardak, N., & Adam, R. (2023). Practical Use of Starlink Downlink Tones for Positioning. Sensors, 23(6), 3234. https://doi.org/10.3390/s23063234.
Kaur, N., & Kaur, A. (2019). A Compact Plus Shaped Carpet Fractal Antenna with an I-Shaped DGS for C-band/X-band/UWB/WIBAN applications. Wireless Pers. Commun., 109, 1673–1687. https://doi.org/10.1007/s11277-019-06645-y.
Kogut, A., Annino, G., Bakkali, M. E., Laamara, R. A., Arora, S. K., Naik, D. S. B., & Maniraguha, F. (2022). Millimeter Wave All-Around Antenna Based on Whispering Gallery Mode Dielectric Resonator for IoT-Based Applications. Wireless Communications and Mobile Computing, 2022(1), 5877263, 1-10.? https://doi.org/10.1155/2022/5877263.
Li, X., Ma, R., Cai, H., Pan, Y. -M., & Zhang, X. Y. (2023). High-Gain Dual-Band Aperture-Shared CP Patch Antenna With Wide AR Beamwidth for Satellite Navigation System. In IEEE Antennas and Wireless Propagation Letters, 22(8), 1888-1891. https://doi.org/10.1109/LAWP.2023.3268653.
Liu, T., & Feng, Q. (2023). Broadband and High-Gain Low-Profile Array Antenna Loaded With Parasitic Patches. In IEEE Antennas and Wireless Propagation Letters, 22(10), 2595-2599. https://doi.org/10.1109/LAWP.2023.3298364.?
Liu, G., Hu, P. F., Su, G. D., & Pan, Y. M. (2024). Bandwidth and Gain Enhancement of a Single-Layer Filtering Patch Antenna Using Reshaped TM Mode. In IEEE Antennas and Wireless Propagation Letters, 23(1), 314-318. https://doi.org/10.1109/LAWP.2023.3323653.
Mahendran, K., Gayathiri, R., & Sudarsan, H. (2021). Design of Multi Band Triangular Microstrip Patch Antenna with Triangular Split Ring Resonator for S Band, C Band and X Band Applications. Microprocessors and Microsystems, 80, 103400. https://doi.org/10.1016/j.micpro.2020.103400.
Mishra, B. (2019). An ultra compact triple band antenna for X/Ku/K band applications. Microw Opt Technol Lett., 61(7), 1857–1862. https://doi.org/10.1002/mop.31812.
Mishra, G.P., & Mangaraj, B.B. (2019). Miniaturised microstrip patch design based on highly capacitive defected ground structure with fractal boundary for X-band microwave communications. IET Microw. Antennas Propag., 13(10), 1593-1601. https://doi.org/10.1049/iet-map.2018.5778.
Naqvi, H., & Lim, S. (2018). Microfluidically Polarization-Switchable Metasurfaced Antenna. IEEE Antennas and Wireless Propagation Letters, 17(12), 2255-2259. https://doi.org/10.1109/lawp.2018.2872108.
Paiva, J. L. d. S., Silva, J. P. D., Campos, A. L. P. d. S., & Andrade, H. D. D. (2019). Using metasurface structures as signal polarisers in microstrip antennas. IET Microwaves, Antennas Propagation, 13(1), 23-27. https://doi.org/10.1049/iet-map.2018.5112.
Patidar, H., Das A., & Kar, R. (2024). Small planar antenna array design using length and spacing through Matlab-HFSS interfacing. International Journal of Communication Systems, 37(9), e5770.
Panda, R. A., Panda, M., Nayak, P. K., & Mishra, D. (2020). Log periodic implementation of butterfly shaped patch antenna with gain enhancement technique for X-band applications. In ICICCT 2019–System Reliability, Quality Control, Safety, Maintenance and Management: Applications to Electrical, Electronics and Computer Science and Engineering (pp. 20-28). Springer Singapore.
Prabhu, T., Suganya, E., & Pandian, S. C. (2020, March). Design of an UWB antenna for Microwave C and X Band Applications. In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 311-316). IEEE.
Sahoo, A.K., Gupta, R.D., & Parihar, M.S. (2018). Circularly polarised filtering dielectric resonator antenna for X-band applications. IET Microwaves, Antennas & Propagation, 12(9), 1514-1518. https://doi.org/10.1049/iet-map.2017.1159.
Samantaray, D., & Bhattacharyya, S. (2020). A Gain-Enhanced Slotted Patch Antenna Using Metasurface as Superstrate Configuration. IEEE Transactions on Antennas and Propagation, 68(9), 6548-6556. https://doi.org/10.1109/tap.2020.2990280.
Srivastava, K., Mishra, B., Patel, A.K., & Singh, R. (2020). Circularly polarized defected ground stub-matched triple-band microstrip antenna for C- and X-band applications. Microwave and Optical Technology Letters, 62(10), 3301-3309. https://doi.org/10.1002/mop.32450.
Salamin, M. A., Ali, W. A.E., Das, S., & Zugari, A. (2019). Design and investigation of a multi-functional antenna with variable wideband/notched UWB behavior for WLAN/X-band/UWB and Ku-band applications. AEU-International Journal of Electronics and Communications, 111, 152895. https://doi.org/10.1016/j.aeue.2019.152895.
Tewary, T., Maity, S., Mukherjee, S., Roy, A., Sarkar, P. P., & Bhunia, S. (2021). Design of high gain broadband microstrip patch antenna for UWB/X/Ku band applications. AEU-International Journal of Electronics and Communications, 139, 153905. https://doi.org/10.1016/j.aeue.2021.153905.
UM5-Ribat & UM5-EOSat CubeSats. (2024). Website of Space Watch Africa, Retrieved from: https://spacewatchafrica.com/mohammed-v-university-and-spacex-launch-two-nanosatellites/ [Retrieved on: 23th September 2024].
Voštinár, P., & Ferianc, P. (2023). Merge Cube as a New Teaching Tool for Augmented Reality, IEEE Access, 11, 81092-81100. https://doi.org/10.1109/ACCESS.2023.3301399.
Yadav, M. V., Baudha, S., and Singam, S. C. (2020). Multiple Slot Planar Antenna for X-Band Satellite Mobile Communication. Proceeding of the IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 1-4. https://doi.org/10.1109/upcon50219.2020.9376539.
Zea, L., Aguilar-Nadalini, A., Martínez, M., Birnie, J., Miranda, E., España, F., Chung, K., Álvarez, D., Bagur, J. A., Estrada, C., Herrarte, R., & Ayerdi, V. H. (2023). Academic development and space operations of a multispectral imaging payload for 1U CubeSats. Journal of Applied Remote Sensing, 17(4), 047501-047501. https://doi.org/10.1117/1.JRS.17.047501.
Zhang, S., Liu, N. -W., Li, Y., & Sun, S. (2023). A Gain-Enhanced Differential-Fed Stacked Circular Patch Antenna With Simultaneously Controllable E-Plane and H-Plane Radiation Nulls. IEEE Transactions on Antennas and Propagation, 71(8), 6399-6412. https://doi.org/10.1109/TAP.2023.3284047.