Deep Learning Techniques for MRI Image-Based Performance Analysis of Brain Tumor Classification

Authors

  • Renuga S Department of Artificial Intelligence and Data science, Panimalar Engineering College, Varadharajapuram, Poonamallee, Chennai, Tamil Nadu, India.
  • Malathi P Department of Computer Science and Engineering, SRM Institute of Science and Technology, Ramapuram, Tamil Nadu, India.
  • Shamija Sherryl R.M.R Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Ramapuram, Tamil Nadu, India.
  • Anuradha T Department of Electrical and Electronics Engineering, KCG College of Technology, Chennai, Tamil Nadu, India.
  • Mishmala Sushith Department of Information Technology, Adithya Institute of Technology, Coimbatore, Tamil Nadu, India.
  • Senthil Kumar A Department of Computer Science and Engineering, School of Engineering, Dayananda Sagar University, Bangalore, India.

DOI:

https://doi.org/10.37385/jaets.v6i1.6288

Keywords:

Deep learning, Modified trimmed median filter, 3D Version of U-Net segmentation, Discrete wavelet transform, Convolutional Neural Network (CNN) Based VGG-16

Abstract

Brain tumors can produce symptoms and indicators due to direct tissue death, localized invasion of the brain, or aftereffects from increased intracranial pressure. In order to identify images from the publicly available image dataset, this work combined multiple image feature sources using deep learning algorithms. The architecture of most classic convolutional neural networks (CNNs) consists of convolution modification and max-pooling of layers connected with several completely linked layers. The steps used in this system are pre-processing, segmentation, feature extraction, and classification. The preprocessing procedures of this investigation were used by the modified trimmed median filtering approach. U-Net segmentation is used to carry out the segmentation process. Features are then extracted using the wavelet transform method. In this study, MRI images of brain tumors, including meningnant and benign tumors, were detected and classified using the proposed CNN-based VGG16 model. The convolutional neural network (CNN) architectures employed in this investigation were guided by the VGG-16. The outcomes are assessed in terms of accuracy, precision, recall, and F1-score after the suggested model has been simulated. According on the test findings, the recommended approach may lead to 96.9% maximum recall, 97.4% maximum F1-score, 98.45% maximum accuracy, and 98.1% maximum precision.

Downloads

Download data is not yet available.

References

Abdusalomov, A. B., Mukhiddinov, M., & Whangbo, T. K. (2023). Brain tumor detection based on deep learning approaches and magnetic resonance imaging. Cancers, 15(16), 4172. https://doi.org/10.3390/cancers15164172.

Alnaggar, O. A. M. F., Jagadale, B. N., & Narayan, S. H. (2022). MRI brain tumor detection using boosted crossbred random forests and chimp optimization algorithm based convolutional neural networks. Int J Intell Eng Syst, 15(2), 36-46, https://doi.org/10.22266/ijies2022.0430.04.

Amin, J., Sharif, M., Haldorai, A., Yasmin, M., & Nayak, R. S. (2022). Brain tumor detection and classification using machine learning: a comprehensive survey. Complex & intelligent systems, 8(4), 3161-3183. https://doi.org/10.1007/s40747-021-00563-y.

Amran, G. A., Alsharam, M. S., Blajam, A. O. A., Hasan, A. A., Alfaifi, M. Y., Amran, M. H., ... & Eldin, S. M. (2022). Brain tumor classification and detection using hybrid deep tumor network. Electronics, 11(21), 3457. https://doi.org/10.3390/electronics11213457

Anantharajan, S., Gunasekaran, S., Subramanian, T., & Venkatesh, R. (2024). MRI brain tumor detection using deep learning and machine learning approaches. Measurement: Sensors, 31, 101026. https://doi.org/10.1016/j.measen.2024.101026.

Aulia, S., & Rahmat, D. (2022). Brain tumor identification based on VGG-16 architecture and CLAHE method. JOIV: International Journal on Informatics Visualization, 6(1), 96-102. http://dx.doi.org/10.30630/joiv.6.1.864.

Baalamurugan, K. M., Priyamvada Singh, and Vijay Ramalingam. "A novel approach for brain tumor detection by self-organizing map (SOM) using adaptive network based fuzzy inference system (ANFIS) for robotic systems." International Journal of Intelligent Unmanned Systems 10, no. 1 (2022): 98-116. https://doi.org/10.1108/IJIUS-08-2020-0038.

Bahadure, N. B., Ray, A. K., & Thethi, H. P. (2017). Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. International journal of biomedical imaging, 2017(1), 9749108. https://doi.org/10.1155/2017/9749108.

Chahal, P. K., Pandey, S., & Goel, S. (2020). A survey on brain tumor detection techniques for MR images. Multimedia Tools and Applications, 79(29), 21771-21814. https://link.springer.com/article/10.1007/s11042-020-08898-3.

Chaudhary, A., & Bhattacharjee, V. (2020). An efficient method for brain tumor detection and categorization using MRI images by K-means clustering & DWT. International Journal of Information Technology, 12(1), 141-148. https://doi.org/10.1007/s41870-018-0255-4.

Colucci-D’Amato, L., Speranza, L., & Volpicelli, F. (2020). Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. International journal of molecular sciences, 21(20), 7777. https://doi.org/10.3390/ijms21207777.

Gajula, S., & Rajesh, V. (2024). An MRI brain tumour detection using logistic regression-based machine learning model. International Journal of System Assurance Engineering and Management, 15(1), 124-134. https://doi.org/10.1007/s13198-022-01680-8.

Garg, G., & Garg, R. (2021). Brain tumor detection and classification based on hybrid ensemble classifier. arXiv preprint arXiv:2101.00216. https://doi.org/10.48550/arXiv.2101.00216.

Gore, D. V., & Deshpande, V. (2020, June). Comparative study of various techniques using deep Learning for brain tumor detection. In 2020 International conference for emerging technology (INCET) (pp. 1-4). IEEE. https://doi.org/10.1109/INCET49848.2020.9154030.

Halder, T. K., Sarkar, K., Mandal, A., & Sarkar, S. (2022). A novel histogram feature for brain tumor detection. International Journal of Information Technology, 14(4), 1883-1892. https://doi.org/10.1007/s41870-022-00917-w.

Hu, A., & Razmjooy, N. (2021). Brain tumor diagnosis based on metaheuristics and deep learning. International Journal of Imaging Systems and Technology, 31(2), 657-669. https://doi.org/10.1002/ima.22495.

Islam, M. M., Talukder, M. A., Uddin, M. A., Akhter, A., & Khalid, M. (2024). Brainnet: precision brain tumor classification with optimized efficientnet architecture. International Journal of Intelligent Systems, 2024(1), 3583612. https://doi.org/10.1155/2024/3583612.

Kang, J., Ullah, Z., & Gwak, J. (2021). MRI-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors, 21(6), 2222. https://doi.org/10.3390/s21062222.

Kaushik, P. (2023). Deep Learning Unveils Hidden Insights: Advancing Brain Tumor Diagnosis. International Journal for Global Academic & Scientific Research, 2(2), 01-14. https://doi.org/10.55938/ijgasr.v2i2.45.

Kempanna, S. R., Rangappa, A. A., Maheshappa, S., Siddaraju, D. K., Gowda, K. P., Ramachandragowda, S. K., & Tagare, T. S. (2024). Revolutionizing brain tumor diagnoses: a ResNet18 and focal loss approach to magnetic resonance imaging-based classification in neuro-oncology. International Journal of Electrical & Computer Engineering (2088-8708), 14(6). https://doi.org/10.11591/ijece.v14i6.pp6551-6559.

Kumar, A., Chauda, P., & Devrari, A. (2021). Machine learning approach for brain tumor detection and segmentation. International Journal of Organizational and Collective Intelligence (IJOCI), 11(3), 68-84. https://doi.org/10.4018/IJOCI.2021070105.

Kumar, S., Dabas, C., & Godara, S. (2017). Classification of brain MRI tumor images: a hybrid approach. Procedia computer science, 122, 510-517. https://doi.org/10.1016/j.procs.2017.11.400.

Kumar, S., Vig, G., Varshney, S., & Bansal, P. (2020). Brain tumor detection based on multilevel 2D histogram image segmentation using DEWO optimization algorithm. International Journal of E-Health and Medical Communications (IJEHMC), 11(3), 71-85. https://doi.org/10.4018/IJEHMC.2020070105.

Mahjoubi, M. A., Hamida, S., Gannour, O. E., Cherradi, B., Abbassi, A. E., & Raihani, A. (2023). Improved multiclass brain tumor detection using convolutional neural networks and magnetic resonance imaging. Int. J. Adv. Comput. Sci. Appl., 14(3). https://www.academia.edu/download/104086729/Paper_46Improved_Multiclass_Brain_Tumor_Detection.pdf.

Mahmud, M. I., Mamun, M., & Abdelgawad, A. (2023). A deep analysis of brain tumor detection from mr images using deep learning networks. Algorithms, 16(4), 176. https://doi.org/10.3390/a16040176.

Mittal, N., & Tayal, S. (2021). Advance computer analysis of magnetic resonance imaging (MRI) for early brain tumor detection. International Journal of Neuroscience, 131(6), 555-570. https://doi.org/10.1080/00207454.2020.1750390.

Mohanty, B. C., Subudhi, P. K., Dash, R., & Mohanty, B. (2024). Feature-enhanced deep learning technique with soft attention for MRI-based brain tumor classification. International Journal of Information Technology, 16(3), 1617-1626. https://doi.org/10.1007/s41870-023-01701-0.

Pacal, I. (2024). A novel Swin transformer approach utilizing residual multi-layer perceptron for diagnosing brain tumors in MRI images. International Journal of Machine Learning and Cybernetics, 1-19. https://doi.org/10.1007/s13042-024-02110-w.

Padma Nanthagopal, A., & Sukanesh Rajamony, R. (2013). Classification of benign and malignant brain tumor CT images using wavelet texture parameters and neural network classifier. Journal of visualization, 16, 19-28. https://doi.org//10.1007/s12650-012-0153-y.

Praveena, M., and M. Kameswara Rao. "Brain tumor detection using Integrated Learning Process Detection (ILPD)." International Journal of Advanced Computer Science and Applications 13, no. 10 (2022). https://doi.org/10.14569/IJACSA.2022.0131018.

Ravinder, M., Saluja, G., Allabun, S., Alqahtani, M. S., Abbas, M., Othman, M., & Soufiene, B. O. (2023). Enhanced brain tumor classification using graph convolutional neural network architecture. Scientific Reports, 13(1), 14938. https://doi.org/10.1038/s41598-023-41407-8.

Saxena, P., Maheshwari, A., & Maheshwari, S. (2020). Predictive modeling of brain tumor: a deep learning approach. In Innovations in Computational Intelligence and Computer Vision: Proceedings of ICICV 2020 (pp. 275-285). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-6067-5_30.

Shamshad, N., Sarwr, D., Almogren, A., Saleem, K., Munawar, A., Rehman, A. U., & Bharany, S. (2024). Enhancing Brain Tumor Classification by a Comprehensive Study on Transfer Learning Techniques and Model Efficiency Using MRI Datasets. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3430109.

Sharif, M. I., Li, J. P., Khan, M. A., Kadry, S., & Tariq, U. (2024). M3BTCNet: multi model brain tumor classification using metaheuristic deep neural network features optimization. Neural Computing and Applications, 36(1), 95-110. https://doi.org/10.1007/s00521-022-07204-6.

Sharma, A. K., Nandal, A., Dhaka, A., Zhou, L., Alhudhaif, A., Alenezi, F., & Polat, K. (2023). Brain tumor classification using the modified ResNet50 model based on transfer learning. Biomedical Signal Processing and Control, 86, 105299. https://doi.org/10.1016/j.bspc.2023.105299.

Singh, R., & Agarwal, B. B. (2023). An automated brain tumor classification in MR images using an enhanced convolutional neural network. International Journal of Information Technology, 15(2), 665-674. https://doi.org/10.1007/s41870-022-01095-5.

Soomro, T. A., Zheng, L., Afifi, A. J., Ali, A., Soomro, S., Yin, M., & Gao, J. (2022). Image segmentation for MR brain tumor detection using machine learning: a review. IEEE Reviews in Biomedical Engineering, 16, 70-90. https://doi.org/10.1109/RBME.2022.3185292.

Sravanthi, N. S. R. D. N., Swetha, N., Devi, P. R., Rachana, S., Gothane, S., & Sateesh, N. J. I. J. S. R. C. S. E. I. T. (2021). Brain tumor detection using image processing. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 7(3), 348-352. https://www.academia.edu/download/67937437/CSEIT217384.pdf.

Weber, M. A., Zoubaa, S., Schlieter, M., Juttler, E., Huttner, H. B., Geletneky, K., ... & Essig, M. (2006). Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology, 66(12), 1899-1906. https://doi.org/10.1212/01.wnl.0000219767.49705.9c.

Zeineldin, R. A., Karar, M. E., Coburger, J., Wirtz, C. R., & Burgert, O. (2020). DeepSeg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images. International journal of computer assisted radiology and surgery, 15(6), 909-920. https://doi.org/10.1007/s11548-020-02186-z.

Downloads

Published

2024-12-15

How to Cite

S, R., P, M., R.M.R, S. S., T, A., Sushith, M., & A, S. K. (2024). Deep Learning Techniques for MRI Image-Based Performance Analysis of Brain Tumor Classification . Journal of Applied Engineering and Technological Science (JAETS), 6(1), 593–609. https://doi.org/10.37385/jaets.v6i1.6288