Application of C5.0 Algorithm in Prediction of Learning Outcomes in Calculus Subject

Authors

  • Fida Nafisah Giustin Universitas Singaperbangsa Karawang
  • Betha Nurina Sari Universitas Singaperbangsa Karawang
  • Tesa Nur Padilah Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.37385/jaets.v3i2.673

Keywords:

data mining, prediction, C5.0 algorithm, CRISP-DM, student achievements

Abstract

Calculus is one of the basic subject that must be studied at the computer science faculty of the informatics engineering study program. For some students, especially in the Faculty of Informatics Engineering, calculus is a subject that is considered quite difficult, even though this subject is important for them. And the resulted for some students having to repeat this subject. For this reason, predictions of calculus learning outcomes are carried out by applying the data mining process and using the C5.0 method for the prediction process based on the classification concept that will be carried out. This study applies the Cross Industry Standard Process for Data Mining (CRISP – DM) methodology with the C5.0 algorithm. The results are in the form of a decision tree (Decision tree) and the rules in it using the attributes of guardian, number of family members, status of residence, internet, activity, desire to continue study, the last education of parents (father and mother), parents' occupations, grades on assignments, UAS, and UTS. The C5.0 algorithm is able to predict the results of learning calculus. The evaluation results show that the applied C5.0 algorithm has an accuracy of 95%.

Downloads

Download data is not yet available.

References

Aesyi, U. S., Lahitani, A. R., Diwangkara, T. W., & Kurniawan, R. T. (2021). Deteksi Dini Mahasiswa Drop Out Menggunakan C5. 0. JISKA (Jurnal Informatika Sunan Kalijaga), 6(2), 113-119.

Benediktus, N., & Oetama, R. S. (2020). The decision tree c5. 0 classification algorithm for predicting student academic performance. Ultimatics: Jurnal Teknik Informatika, 12(1), 14-19.

Cherfi, A., Nouira, K., & Ferchichi, A. (2018). Very fast C4. 5 decision tree algorithm. Applied Artificial Intelligence, 32(2), 119-137.

Damanik, I. S., Windarto, A. P., Wanto, A., Andani, S. R., & Saputra, W. (2019, August). Decision tree optimization in C4. 5 algorithm using genetic algorithm. In Journal of Physics: Conference Series (Vol. 1255, No. 1, p. 012012). IOP Publishing.

Febriantono, M. A., Pramono, S. H., Rahmadwati, R., & Naghdy, G. (2020). Classification of multiclass imbalanced data using cost-sensitive decision tree C5. 0. IAES International Journal of Artificial Intelligence, 9(1), 65.

Fahmi, R. N. (2021). Implementasi Metode K-Means Clustering dalam Analisis Persebaran UMKM di Jawa Barat. JOINS (Journal of Information System), 6(2), 211-220.

Han, J., Kamber, M., & Mining, D. (2006). Concepts and techniques. Morgan Kaufmann, 340, 94104-3205.

Hanin, N. A. (2022). Analisis Layanan Informasi Berbasis Chatbot Menggunakan Framework Rasa Open Source Pada Objek Wisata Candi Prambanan (Doctoral dissertation, Institut Teknologi Telkom Purwokerto).

Rahman, K. (2018). Perkembangan Lembaga Pendidikan Islam di Indonesia. Jurnal Tarbiyatuna: Kajian Pendidikan Islam, 2(1), 1-14.

Renaldi, D. (2020). Penerapan Association Rule Data Mining Untuk Rekomendasi Produk Kosmetik Pada Pt. Fabiando Sejahtera Menggunakan Algoritma Apriori. Algor, 2(1), 1-11.

Sari, B. N. (2017). Prediksi Performa Akademik Siswa Pada Pelajaran Matematika Menggunakan Bayesian Networks dan Algoritma Klasifikasi Machine Learning. KNPMP II, Universitas Muhammadiyah Surakarta. ISSN, 2502-6526.

Sokkhey, P., Navy, S., Tong, L., & Okazaki, T. (2020). Multi-models of educational data mining for predicting student performance in mathematics: a case study on high schools in Cambodia. IEIE Transactions on Smart Processing and Computing, 9(3), 217-229.

Zhang, X., Xue, R., Liu, B., Lu, W., & Zhang, Y. (2018, July). Grade prediction of student academic performance with multiple classification models. In 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (pp. 1086-1090). IEEE.

Downloads

Published

2022-06-22

How to Cite

Giustin, F. N., Sari, B. N., & Padilah, T. N. (2022). Application of C5.0 Algorithm in Prediction of Learning Outcomes in Calculus Subject. Journal of Applied Engineering and Technological Science (JAETS), 3(2), 90–97. https://doi.org/10.37385/jaets.v3i2.673