Classification of Maturity Levels in Areca Fruit Based on HSV Image Using the KNN Method

Authors

  • Frencis Matheos Sarimole STIKOM Cipta Karya Informatika
  • Anita Rosiana STIKOM Cipta Karya Informatika

DOI:

https://doi.org/10.37385/jaets.v4i1.951

Keywords:

Matlab, Areca Ripeness, KNN, HSV

Abstract

Areca nut (Areca catechu) is a kind of palm plant that grows in Asia and Africa, the eastern part of the Pacific and in Indonesia itself, areca nut can also be found on the islands of Java, Sumatra and Kalimantan. At the stage of classifying the maturity of the betel nut so far, it is still using the manual method which at that stage has subjective weaknesses. Based on these problems, researchers will create a system that is able to classify the level of maturity of areca nut using HSV feature extraction with assistance at the classification stage using the KNN method. In this study, 842 datasets were used which were divided into 3 types of classes, namely ripe, unripe and old fruit. The dataset was divided into 683 training data and 159 test data. In the next stage, the data is tested using the K-Nearest Neighbor method by calculating the closest distance using k = 1. From the results of the calculation of the closest distance k1 produces an accuracy rate of 87.42%.

Kata kunciMatlab, Areca Ripeness, KNN, HSV.

Downloads

Download data is not yet available.

References

B Barkah, M. F. (2020). Klasifikasi Rasa Buah Jeruk Pontianak Berdasarkan Warna Kulit Buah Jeruk Menggunakan Metode K-Nearest Neighbor. Coding Jurnal Komputer dan Aplikasi, 8(1).

Meiriyama, M. (2018). Klasifikasi Citra Buah berbasis fitur warna HSV dengan klasifikator SVM. Jurnal Komputer Terapan, 4(1), 50-61.

Mubarok, H., Murni, S., & Santoni, M. M. (2021). Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Tingkat Kematangan Buah Tomat Berdasarkan Fitur Warna. Senamika, 2(1), 773-782.

Khotimah, H., Nafi’iyah, N., & Masruroh, M. (2020). Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV dengan KNN. Jurnal Elektronika Listrik dan Teknologi Informasi Terapan, 1(2), 1-4

Paramita, C., Rachmawanto, E. H., Sari, C. A., & Setiadi, D. R. I. M. (2019). Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor. Jurnal Informatika, 4(1).7

Pariyandani, A., Larasati, D. A., Wanti, E. P., & Muhathir, M. (2019). Klasifikasi Citra Ikan Berformalin Menggunakan Metode K-NN dan GLCM. In Semantika (Seminar Nasional Teknik Informatika). 2(1) 42-47).

Pamungkas, A. P. S., Nafi’iyah, N., & Nawafilah, N. Q. (2019). K-NN Klasifikasi Kematangan Buah Mangga Manalagi Menggunakan L* A* B dan Fitur Statistik. Journal of Computer Science and Visual Communication Design, 4(1), 1-8.

Pusadan, M. Y., & Abdullah, A. I. (2022). k-Nearest Neighbor and Feature Extraction on Detection of Pest and Diseases of Cocoa. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(3), 471-480.

Putra, A. W., Putra, W., Mulyanto, B. S., & Gaffar, A. O. (2021). A performance of combined methods of VCG and 16BCD for feature extraction on HSV. International Journal of Image, Graphics and Signal Processing, 13(3), 13-32.

Shumaila, M. N., Rehman, M., Anjum, M., Kanwal, F., & Bashir, K. (2022). Performing content-based image retrieval using rotated local binary pattern and multiple descriptors. Mehran University Research Journal of Engineering and Technology, 41(3), 142-148.

Thirani, E., Jain, J., & Narawade, V. (2022). Using SVM and KNN to Evaluate Performance Based on Video Plagiarism Detectors and Descriptors for Global. Journal of Soft Computing Paradigm, 4(2), 82-100.

Warnakulasuriya, S., & Chen, T. H. H. (2022). Areca Nut and Oral Cancer: Evidence from Studies Conducted in Humans. Journal of Dental Research, 00220345221092751.

Wijaya, N., & Ridwan, A. (2019). Klasifikasi Jenis Buah Apel Dengan Metode K-Nearest Neighbors Dengan Ekstraksi Fitur HSV dan LBP. Jurnal Sisfokom (Sistem Informasi dan Komputer), 8(1), 74-78.

Yang, R., Wu, Z., Fang, W., Zhang, H., Wang, W., Fu, L., ... & Cui, Y. (2021). Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning. Information Processing in Agriculture.

Downloads

Published

2022-09-02

How to Cite

Sarimole, F. M., & Rosiana, A. (2022). Classification of Maturity Levels in Areca Fruit Based on HSV Image Using the KNN Method. Journal of Applied Engineering and Technological Science (JAETS), 4(1), 64–73. https://doi.org/10.37385/jaets.v4i1.951