Analisis Pengaruh Kualitas Data Analitik, Etika Bisnis, Dan Manajemen Risiko Cyber Terhadap Kinerja Operasional (Studi Pada Perusahaan Fintech P2P Lending Yang Terdaftar Dan Berizin Di Otoritas Jasa Keuangan Indonesia (OJK) Untuk Periode 2023)
DOI:
https://doi.org/10.37385/msej.v5i2.5839Keywords:
Fintech P2P lending, Kualitas Analisis Data, Manajemen Risiko Cyber, Kinerja Operasional, Keamanan CyberAbstract
Penelitian ini meneliti pengaruh kualitas analisis data, etika bisnis, dan manajemen risiko cyber terhadap kinerja operasional perusahaan fintech P2P lending yang terdaftar dan berizin di OJK. Data dikumpulkan melalui kuesioner dari perusahaan tersebut hingga akhir tahun 2023 dan dianalisis menggunakan metode SEM. Hasil penelitian menunjukkan bahwa kualitas analisis data dan manajemen risiko cyber memiliki pengaruh positif signifikan terhadap kinerja operasional, sementara etika bisnis tidak memiliki pengaruh signifikan. Temuan ini memperluas literatur mengenai faktor-faktor yang mempengaruhi kinerja operasional di sektor fintech P2P lending, serta menyoroti pentingnya kualitas analisis data dan manajemen risiko cyber.
References
Babaei, G., & Bamdad, S. (2020). A multi-objective instance-based decision support system for investment recommendation in Peer-to-Peer Lending. Expert Systems With Applications.
Boži?, K., & Dimovski, V. (2019). Journal of Strategic Information Systems Business intelligence and analytics use , innovation ambidexterity , and firm performance?: A dynamic capabilities perspective. Journal of Strategic Information Systems, 10.
Campbell, D., Loumioti, M., & Wittenberg-moerman, R. (2019). Loumioti, M., & Wittenberg-moerman, R. (2019). Making sense of soft information?: interpretation bias and loan quality. Journal of Accounting And Economics.
Chavez, R., Yu, W., Gimenez, C., & Fynes, B. (2015). AC. Customer integration and operational performance: The mediating role of iinformation quality Decision Support Systems.
COSO. (n.d.). Executive Summary Enterprise Risk Management Integrating with Strategy and Performance.PwC.
Das, S. R. (2019). The future of Fintech. 1–27.
Davenport, T. H., Harris, J. G., Long, D. W. De, & Jacobson, A. L. (2001). Data to Knowledge to Results.
Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., & Hazen, B. T. (2019). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organizations. International Journal of Production Economics.
Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Fosso Wamba, S., Giannakis, M., & Foropon, C. (2019). Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain. International Journal of Production Economics, 120–136.
Galligan, M. E., Herrygers, S., & Rau, K. (2015). COSO In The Cyber Age.
Galligan, M. E., Herrygers, S., & Rau, K. (2019). Managing Cyber Risk In A Digital Age. COSO.
Ghasemaghaei, M., Ebrahimi, S., & Hassanein, K. (2018). Data analytics competency for improving firm decision making performance. Journal of Strategic Information Systems, 101–113.
Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 106–121.
Kahneman, Daniel, Tversky, & Amos. (1979). Prospect Theory: An Analysis of Decision Under Risk.
KPMG. (2018). The Fintech Edge. KPMG Siddharta Advisory. Kpmg.Com.
Kumar, V., Boulanger, D., Seanosky, J., Kinshuk, Panneerselvam, K., & Somasundaram, T. S. (2014). Competence analytics. Journal of Computers in Education, 1(4), 251–270. https://doi.org/10.1007/s40692-014-0018-6
Leong, W., Yip, N., & Ann, J. (2018). The adoption of technological innovations in a B2B context and its impact on firm performance?: An ethical leadership perspective.
Liu, Q., Zou, L., Yang, X., & Tang, J. (2019). Survival or die?: a survival analysis on peer-to-peer Lending platforms in China. Accounting & Finance.
Mulyani, S. (2019). The Influence of Using Enterprise Resource Planning ( ERP ) Technology and Knowledge Management on the Quality of Accounting Information Systems. 62–68.
Neuman, W. L. (2014). Social Research Methods: Qualitative and Quantitative Approaches (7th ed.). Pearson Education Limited.
Rahma, & Anthika. (2020). Sustainability in The Banking Industry: A Strategic Multi-Criterion Analysis.
Sekaran, U., & Bougie, R. (2016). Research Methods For Business: A Skill Building Approach.
Sugiyono. (2008). Metode Penelitian Pendidikan.
Susanto, A., Mulyani, S., & Suharman, H. (2019). The Effect of E-Commerce Application , User Personality , and Corporative Strategy on the Effectivity of Accountancy Information System and It ’ s Impact on Accountancy Information Quality.
Suzan, L., Mulyani, S., Sukmadilaga, C., & Farida, I. (2019). Empirical testing of the implementation of supply chain management and successful supporting factors of management accounting information systems. International Journal of Supply Chain Management, 629–641.
Tu, W., Yang, M., Cheung, D. W., & Mamoulis, N. (2018). PT US CR. Information Systems.
Wijanto, & Setyo Hari. (2008). Structural Equation Modelling dengan Lisrel 8.8 Konsep dan Tutorial. Graha Ilmu.
Winarto, & Yudho. (2020). Para tersangka Fintech ilegal diancam hukuman lima tahun penjara. Kontan.